1.Research on flow characteristics of dual-outlet centrifugal disk blood pumps.
Qilong LIAN ; Yuan XIAO ; Yiping XIAO ; Zhanshuo CAO ; Guomin CUI
Journal of Biomedical Engineering 2025;42(2):374-381
Tesla blood pumps demonstrate a reduced propensity for hemolysis and thrombosis compared with vane blood pumps. Considering the restricted driving force within the secondary flow channel of vane blood pumps, along with the low hydraulic efficiency of conventional Tesla blood pumps and their internal flow characteristics that significantly contribute to hemolysis and thrombosis, this study introduces a set of vanes atop the rotor of the Tesla blood pump. This forms a dual-fluid domain rotor, and an axial dual-outlet volute shell structure is adopted to realize the separation of the fluid domains. Through numerical simulations of the new structure, a comparative analysis was conducted in this study on the internal flow characteristics of double-outlet and single-outlet volute shells, and symmetric and asymmetric cross-sections of the same rotor. The results indicate that the flow field distribution is more uniform under the double-outlet volute shell structure, and overall energy dissipation is decreased. After implementing the double-outlet design, in the asymmetric cross-section, compared with the symmetric cross-section, the fluid velocity gradient and turbulent kinetic energy at the tongue of the septum are reduced, and the fluid velocity gradient at the convergence of the diffuser tube outlets are also decreased. The maximum scalar stress is lower, and the decline in head and efficiency is mitigated. Moreover, compared with the single-outlet volute shell, the hemolysis index in the asymmetric cross-section is reduced. In summary, this paper proposes a novel dual-outlet centrifugal disk blood pumps, which can provide a reference for the structural design and performance optimization of magnetically levitated centrifugal blood pumps.
Heart-Assist Devices
;
Humans
;
Equipment Design
;
Hemolysis
;
Computer Simulation
2.Optimization of flow rate and orientation of outflow graft at implantation for patients with left ventricular assist device.
Yongyi WANG ; Li SHI ; Shijun HU ; Xiao TAN ; Tianli ZHAO
Journal of Central South University(Medical Sciences) 2025;50(3):457-468
OBJECTIVES:
A ventricular assist device (VAD) is an electromechanical device used to assist cardiac blood circulation, which can be employed for the treatment of end-stage heart failure and is most commonly placed in the left ventricle. Despite enhancing perfusion performance, the implantation of left ventricular assist device (LVAD) transforms the local intraventricular flow and thus may increase the risk of thrombogenesis. This study aims to investigate fluid-particle interactions and thromboembolic risk under different LVAD configurations using three-dimensional (3D) reconstruction models, focusing on the effects of outflow tract orientation and blood flow rates.
METHODS:
A patient-specific end-diastolic 3D reconstruction model was initially constructed in stereo lithography (STL) format using Mimics software based on CT images. Transient numerical simulations were performed to analyze fluid-particle interactions and thromboembolic risks for LVAD with varying outflow tract orientations under 2 flow rates (4 L/min and 5 L/min), using particles of uniform size (2 mm), and a blood flow rate optimization protocol was implemented for this patient.
RESULTS:
When the LVAD flow rate was 5 L/min, helicity and flow stagnation of the blood flow increased the particle residence time (RT) and the risk of thrombogenesis of the aortic root. The percentage of particles traveling toward the brachiocephalic trunk was up to 20.33%. When the LVAD flow rate was 4 L/min, blood turbulence in the aorta was reduced, the RT of blood particles was shortened, and then the percentage of particles traveling toward the brachiocephalic trunk decreased to 10.54%. When the LVAD blood flow rate was 5 L/min and the direction of the outflow pipe was optimal, the RT of blood particles was shortened, and then the percentage of particles traveling toward the brachiocephalic trunk decreased to 11.22%. A 18-month follow-up observation of the patient revealed that the LVAD was in good working order and the patient had no complications related to the implantation of LVAD.
CONCLUSIONS
Implantation of LVAD results in a higher risk of cerebral infarction; When implanting LVAD with the same outflow tract direction, optimizing flow velocity and outflow tract can reduce the risk of cerebral infarction occurrence.
Heart-Assist Devices/adverse effects*
;
Humans
;
Heart Failure/physiopathology*
;
Blood Flow Velocity
;
Thromboembolism/prevention & control*
;
Models, Cardiovascular
;
Heart Ventricles/physiopathology*
;
Imaging, Three-Dimensional
3.Optimization of centrifugal artificial heart pump blade parameters based on back propagation neural network and grey wolf optimization algorithm.
Lulu MU ; Huanhuan DUAN ; Yuan XIAO ; Guomin CUI
Journal of Biomedical Engineering 2024;41(6):1221-1226
The impeller, as a key component of artificial heart pumps, experiences high shear stress due to its rapid rotation, which may lead to hemolysis. To enhance the hemolytic performance of artificial heart pumps and identify the optimal combination of blade parameters, an optimization design for existing pump blades is conducted. The number of blades, outlet angle, and blade thickness were selected as design variables, with the maximum shear stress within the pump serving as the optimization objective. A back propagation (BP) neural network prediction model was established using existing simulation data, and a grey wolf optimization algorithm was employed to optimize the blade parameters. The results indicated that the optimized blade parameters consisted of 7 impeller blades, an outlet angle of 25 °, and a blade thickness of 1.2 mm; this configuration achieved a maximum shear stress value of 377 Pa-representing a reduction of 16% compared to the original model. Simulation analysis revealed that in comparison to the original model, regions with high shear stress at locations such as the outer edge, root, and base significantly decreased following optimization efforts, thus leading to marked improvements in hemolytic performance. The coupling algorithm employed in this study has significantly reduced the workload associated with modeling and simulation, while also enhancing the performance of optimization objectives. Compared to traditional optimization algorithms, it demonstrates distinct advantages, thereby providing a novel approach for investigating parameter optimization issues related to centrifugal artificial heart pumps.
Neural Networks, Computer
;
Algorithms
;
Heart-Assist Devices
;
Hemolysis
;
Humans
;
Equipment Design
;
Stress, Mechanical
;
Computer Simulation
4.Surgical treatment of heart failure in China: towards the era of artificial heart.
Chinese Journal of Surgery 2023;61(3):177-180
The number of patients with heart failure in China is large, and the proportion of patients with end-stage heart failure continues to increase. The clinical effect of guideline-directed medications therapy for end-stage heart failure is poor. Heart transplantation is the most effective treatment for end-stage heart failure. But it is faced with many limitations such as the shortage of donors. In recent years, the research and development of artificial heart in China has made great progress. Three devices have been approved by the National Medical Products Administration for marketing, and another one is undergoing pre-marketing clinical trial. Since 2017, more than 200 cases of ventricular assist device implantation have been carried out in more than 34 hospitals in China. Among them, 70 patients in Fuwai Hospital, Chinese Academy of Medical Sciences had a 2-year survival rate of 90%. The first patient has survived more than 5 years with the device. More efforts should be put into the training of standardized technical team and quality control. Further research should be carried out in the aspects of pulsatile blood flow pump, fully implanted cable-free device, and improved biomaterial with better blood compatibility.
Humans
;
Heart-Assist Devices
;
Heart Failure/surgery*
;
Heart, Artificial
;
Heart Transplantation
;
Pulsatile Flow
5.Long-term outcome of EVAHEART I implantable ventricular assist device for the treatment of end stage heart failure: clinical 3-year follow-up results of 15 cases.
Hai Bo CHEN ; Xian Qiang WANG ; Juan DU ; Jia SHI ; Bing Yang JI ; Li SHI ; Yi Sheng SHI ; Xing Tong ZHOU ; Xiao Han YANG ; Sheng Shou HU
Chinese Journal of Cardiology 2023;51(4):393-399
Objective: To evaluate the long-term efficacy and safety of the implantable ventricular assist system EVAHEART I in clinical use. Methods: Fifteen consecutive patients with end-stage heart failure who received left ventricular assist device therapy in Fuwai Hospital from January 2018 to December 2021 were enrolled in this study, their clinical data were retrospectively analyzed. Cardiac function, liver and kidney function, New York Heart Association (NYHA) classification, 6-minute walk distance and quality of life were evaluated before implantation and at 1, 6, 12, 24 and 36 months after device implantation. Drive cable infection, hemolysis, cerebrovascular events, mechanical failure, abnormally high-power consumption and abnormal pump flow were recorded during follow up. Results: All 15 patients were male, mean average age was (43.0±7.5) years, including 11 cases of dilated cardiomyopathy, 2 cases of ischemic cardiomyopathy, and 2 cases of valvular heart disease. All patients were hemodynamically stable on more than one intravenous vasoactive drugs, and 3 patients were supported by preoperative intra aortic balloon pump (IABP). Compared with before device implantation, left ventricular end-diastolic dimension (LVEDD) was significantly decreased ((80.93±6.69) mm vs. (63.73±6.31) mm, P<0.05), brain natriuretic peptide (BNP), total bilirubin and creatinine were also significantly decreased ((3 544.85±1 723.77) ng/L vs. (770.80±406.39) ng/L; (21.28±10.51) μmol/L vs. (17.39±7.68) μmol/L; (95.82±34.88) μmol/L vs. (77.32±43.81) μmol/L; P<0.05) at 1 week after device implantation. All patients in this group were in NYHA class Ⅳ before implantation, and 9 patients could recover to NYHA class Ⅲ, 3 to class Ⅱ, and 3 to class Ⅰ at 1 month after operation. All patients recovered to class Ⅰ-Ⅱ at 6 months after operation. The 6-minute walk distance, total quality of life and visual analogue scale were significantly increased and improved at 1 month after implantation compared with those before operation (P<0.05). All patients were implanted with EVAHEART I at speeds between 1 700-1 950 rpm, flow rates between 3.2-4.5 L/min, power consumption of 3-9 W. The 1-year, 2-year, and 3-year survival rates were 100%, 87%, and 80%, respectively. Three patients died of multiple organ failure at 412, 610, and 872 d after surgery, respectively. During long-term device carrying, 3 patients developed drive cable infection on 170, 220, and 475 d after surgery, respectively, and were cured by dressing change. One patient underwent heart transplantation at 155 d after surgery due to bacteremia. Three patients developed transient ischemic attack and 1 patient developed hemorrhagic stroke events, all cured without sequelae. Conclusion: EVAHEART I implantable left heart assist system can effectively treat critically ill patients with end-stage heart failure, can be carried for long-term life and significantly improve the survival rate, with clear clinical efficacy.
Humans
;
Male
;
Adult
;
Middle Aged
;
Female
;
Heart Failure/complications*
;
Follow-Up Studies
;
Retrospective Studies
;
Heart-Assist Devices
;
Quality of Life
6.Research Status and Trend of Devices for Treating Advanced Heart Failure.
Guo-Hui JIAO ; Shao-Peng XU ; Jing-Jing MIAO ; Yu-Ji WANG ; Kun WU
Acta Academiae Medicinae Sinicae 2023;45(5):840-852
Heart failure (HF),a chronic progressive disease,is a global health problem and the leading cause of deaths in the global population.The pathophysiological abnormalities of HF mainly include abnormal cardiac structure (myocardium and valves),disturbance of electrophysiological activities,and weakened myocardial contractility.In addition to drug therapy and heart transplantation,interventional therapies can be employed for advanced-stage HF,including transcatheter interventions and mechanical circulatory assist devices.This article introduces the devices used for advanced HF that have been marketed or certified as innovative or breakthrough devices around the world and summarizes the research status and prospects the trend in this field.As diversified combinations of HF devices are used for the treatment of advanced HF,considerations regarding individualized HF therapy,risk-benefit evaluation on device design,medical insurance payment,post-market supervision system,and protection of intellectual property rights of high-end technology are needed,which will boost the development of the technology and industry and benefit the patients.
Humans
;
Heart-Assist Devices
;
Heart Failure/therapy*
;
Heart Transplantation
;
Myocardium
;
Chronic Disease
7.Impact of VA-ECMO combined with IABP and timing on outcome of patients with acute myocardial infarction complicated with cardiogenic shock.
Chen Liang PAN ; Jing ZHAO ; Si Xiong HU ; Peng LEI ; Cun Rui ZHAO ; Yu Run SU ; Wei Ting CAI ; Shan Shan ZHANG ; Zhi Jie YAN ; An Dong LU ; Bo ZHANG ; Ming BAI
Chinese Journal of Cardiology 2023;51(8):851-858
Objective: To investigate the impact of combined use and timing of arterial-venous extracorporeal membrane oxygenation (VA-ECMO) with intra-aortic balloon pump (IABP) on the prognosis of patients with acute myocardial infarction complicated with cardiogenic shock (AMICS). Methods: This was a prospective cohort study, patients with acute myocardial infarction and cardiogenic shock who received VA-ECMO support from the Heart Center of Lanzhou University First Hospital from March 2019 to March 2022 in the registration database of the Chinese Society for Extracorporeal Life Support were enrolled. According to combination with IABP and time point, patients were divided into VA-ECMO alone group, VA-ECMO+IABP concurrent group and VA-ECMO+IABP non-concurrent group. Data from 3 groups of patients were collected, including the demographic characteristics, risk factors, ECG and echocardiographic examination results, critical illness characteristics, coronary intervention results, VA-ECMO related parameters and complications were compared among the three groups. The primary clinical endpoint was all-cause death, and the safety indicators of mechanical circulatory support included a decrease in hemoglobin greater than 50 g/L, gastrointestinal bleeding, bacteremia, lower extremity ischemia, lower extremity thrombosis, acute kidney injury, pulmonary edema and stroke. Kaplan-Meier survival curves were used to analyze the survival outcomes of patients within 30 days of follow-up. Using VA-ECMO+IABP concurrent group as reference, multivariate Cox regression model was used to evaluate the effect of the combination of VA-ECMO+IABP at different time points on the prognosis of AMICS patients within 30 days. Results: The study included 68 AMICS patients who were supported by VA-ECMO, average age was (59.8±10.8) years, there were 12 female patients (17.6%), 19 cases were in VA-ECMO alone group, 34 cases in VA-ECMO+IABP concurrent group and 15 cases in VA-ECMO+IABP non-concurrent group. The success rate of ECMO weaning in the VA-ECMO+IABP concurrent group was significantly higher than that in the VA-ECMO alone group and the VA-ECMO+IABP non-concurrent group (all P<0.05). Compared with the ECMO+IABP non-concurrent group, the other two groups had shorter ECMO support time, lower rates of acute kidney injury complications (all P<0.05), and lower rates of pulmonary edema complications in the ECMO alone group (P<0.05). In-hospital survival rate was significantly higher in the VA-ECMO+IABP concurrent group (28 patients (82.4%)) than in the VA-ECMO alone group (9 patients) and VA-ECMO+IABP non-concurrent group (7 patients) (all P<0.05). The survival rate up to 30 days of follow-up was also significantly higher surviving patients within were in the ECMO+IABP concurrent group (26 cases) than in VA-ECMO alone group (9 patients) and VA-ECMO+IABP non-concurrent group (4 patients) (all P<0.05). Multivariate Cox regression analysis showed that compared with the concurrent use of VA-ECMO+IABP, the use of VA-ECMO alone and non-concurrent use of VA-ECMO+IABP were associated with increased 30-day mortality in AMICS patients (HR=2.801, P=0.036; HR=2.985, P=0.033, respectively). Conclusions: When VA-ECMO is indicated for AMICS patients, combined use with IABP at the same time can improve the ECMO weaning rate, in-hospital survival and survival at 30 days post discharge, and which does not increase additional complications.
Humans
;
Female
;
Middle Aged
;
Aged
;
Shock, Cardiogenic/complications*
;
Extracorporeal Membrane Oxygenation/methods*
;
Pulmonary Edema/complications*
;
Aftercare
;
Prospective Studies
;
Patient Discharge
;
Myocardial Infarction/therapy*
;
Intra-Aortic Balloon Pumping/methods*
;
Treatment Outcome
;
Retrospective Studies
8.Impact of VA-ECMO combined with IABP and timing on outcome of patients with acute myocardial infarction complicated with cardiogenic shock.
Chen Liang PAN ; Jing ZHAO ; Si Xiong HU ; Peng LEI ; Cun Rui ZHAO ; Yu Run SU ; Wei Ting CAI ; Shan Shan ZHANG ; Zhi Jie YAN ; An Dong LU ; Bo ZHANG ; Ming BAI
Chinese Journal of Cardiology 2023;51(8):851-858
Objective: To investigate the impact of combined use and timing of arterial-venous extracorporeal membrane oxygenation (VA-ECMO) with intra-aortic balloon pump (IABP) on the prognosis of patients with acute myocardial infarction complicated with cardiogenic shock (AMICS). Methods: This was a prospective cohort study, patients with acute myocardial infarction and cardiogenic shock who received VA-ECMO support from the Heart Center of Lanzhou University First Hospital from March 2019 to March 2022 in the registration database of the Chinese Society for Extracorporeal Life Support were enrolled. According to combination with IABP and time point, patients were divided into VA-ECMO alone group, VA-ECMO+IABP concurrent group and VA-ECMO+IABP non-concurrent group. Data from 3 groups of patients were collected, including the demographic characteristics, risk factors, ECG and echocardiographic examination results, critical illness characteristics, coronary intervention results, VA-ECMO related parameters and complications were compared among the three groups. The primary clinical endpoint was all-cause death, and the safety indicators of mechanical circulatory support included a decrease in hemoglobin greater than 50 g/L, gastrointestinal bleeding, bacteremia, lower extremity ischemia, lower extremity thrombosis, acute kidney injury, pulmonary edema and stroke. Kaplan-Meier survival curves were used to analyze the survival outcomes of patients within 30 days of follow-up. Using VA-ECMO+IABP concurrent group as reference, multivariate Cox regression model was used to evaluate the effect of the combination of VA-ECMO+IABP at different time points on the prognosis of AMICS patients within 30 days. Results: The study included 68 AMICS patients who were supported by VA-ECMO, average age was (59.8±10.8) years, there were 12 female patients (17.6%), 19 cases were in VA-ECMO alone group, 34 cases in VA-ECMO+IABP concurrent group and 15 cases in VA-ECMO+IABP non-concurrent group. The success rate of ECMO weaning in the VA-ECMO+IABP concurrent group was significantly higher than that in the VA-ECMO alone group and the VA-ECMO+IABP non-concurrent group (all P<0.05). Compared with the ECMO+IABP non-concurrent group, the other two groups had shorter ECMO support time, lower rates of acute kidney injury complications (all P<0.05), and lower rates of pulmonary edema complications in the ECMO alone group (P<0.05). In-hospital survival rate was significantly higher in the VA-ECMO+IABP concurrent group (28 patients (82.4%)) than in the VA-ECMO alone group (9 patients) and VA-ECMO+IABP non-concurrent group (7 patients) (all P<0.05). The survival rate up to 30 days of follow-up was also significantly higher surviving patients within were in the ECMO+IABP concurrent group (26 cases) than in VA-ECMO alone group (9 patients) and VA-ECMO+IABP non-concurrent group (4 patients) (all P<0.05). Multivariate Cox regression analysis showed that compared with the concurrent use of VA-ECMO+IABP, the use of VA-ECMO alone and non-concurrent use of VA-ECMO+IABP were associated with increased 30-day mortality in AMICS patients (HR=2.801, P=0.036; HR=2.985, P=0.033, respectively). Conclusions: When VA-ECMO is indicated for AMICS patients, combined use with IABP at the same time can improve the ECMO weaning rate, in-hospital survival and survival at 30 days post discharge, and which does not increase additional complications.
Humans
;
Female
;
Middle Aged
;
Aged
;
Shock, Cardiogenic/complications*
;
Extracorporeal Membrane Oxygenation/methods*
;
Pulmonary Edema/complications*
;
Aftercare
;
Prospective Studies
;
Patient Discharge
;
Myocardial Infarction/therapy*
;
Intra-Aortic Balloon Pumping/methods*
;
Treatment Outcome
;
Retrospective Studies
9.Mechanical circulatory support combined with immunomodulation treatment for patients with fulminant myocarditis: a single-center real-world study.
Ying Chun JIE ; Yi Wei JIANG ; Ke Ji LIANG ; Xiao Ou ZHOU ; Chen Tao ZHANG ; Zhun FU ; Yu Hua ZHAO
Chinese Journal of Cardiology 2022;50(3):277-281
Objective: To investigate the relationship between the mechanical circulatory support (MCS) combined with immunomodulation and the prognosis of patients with fulminant myocarditis. Methods: This is a retrospective study. A total of 88 patients with fulminant myocarditis admitted to Dongguan Kanghua hospital from Aug. 2008 to Dec. 2020 were included. Medical histories, results of laboratory tests, treatment regimens and clinical outcomes of these patients during their hospitalization were collected from the medical record system. According to the treatment methods, the patients were divided into MCS+immunomodulation group (38 cases), MCS group (20 cases) and traditional treatment group (30 cases). Patients in the MCS+immunomodulation group received intra-aortic balloon pump (IABP) or IABP combined with extracorporeal membrane oxygenation (ECMO) and immunoglobulin or glucocorticoid. Patients in the MCS group only received mechanical circulatory support. Patients in the traditional treatment group received neither mechanical circulatory support nor immunomodulatory therapy, and only used vasoactive drugs and cardiotonic drugs. The in-hospital mortality and length of stay were compared among the three groups. Results: A total of 88 patients with fulminant myocarditis aged (35.0±10.8) years were included, and there were 46 males (52.3%). The mortality of MCS+immunomodulation group (7.9% (3/38) vs. 56.7% (17/30), P=0.001 2) and MCS group (30.0% (6/20) vs. 56.7% (17/30), P=0.002 8) were lower than that of traditional treatment group. Compared with the MCS group, the in-hospital mortality in the MCS+immunomodulation group was lower (P=0.005 4). The most common cause of death was multiple organ dysfunction syndrome (MODS). The constituent ratios of death in MCS+immunomodulation group, MCS group and traditional treatment group were 3/3, 4/6 and 12/17, respectively. The incidence of MODS in the MCS group (20% (4/20)) and the traditional treatment group (40% (12/30)) was significantly higher than that in the MCS+immunomodulation group (7.9% (3/38)) (both P<0.01). In discharged patients, the hospitalization time of MCS+immunomodulation group was shorter than that of traditional treatment group ((13.4±5.5)d vs. (18.5±7.4)d, P<0.05) and MCS group ((13.4±5.5)d vs. (16.9±8.5)d, P<0.05). Conclusion: MCS combined with immunomodulatory therapy is associated with lower in-hospital mortality and shorter hospital stay in patients with fulminant myocarditis.
Adult
;
Heart-Assist Devices
;
Humans
;
Immunomodulation
;
Male
;
Middle Aged
;
Myocarditis/therapy*
;
Retrospective Studies
;
Treatment Outcome
;
Young Adult
10.Effect of a delay mode of a ventricular assist device on hemodynamics of the cardiovascular system.
Yiliang REN ; Shaojun WANG ; Yu GAO ; Zijian LI ; Yao ZHANG ; Fangqun WANG
Journal of Biomedical Engineering 2022;39(2):329-338
The implantation of biventricular assist device (BiVAD) is more challenging than that of left ventricular assist device for the interaction in the process of multiple input and output. Besides, ventricular assist device (VAD) often runs in constant speed (CS) mode in clinical use and thus BiVAD also faces the problems of low pulsation and imbalance of blood volume between systemic circulation and pulmonary circulation. In this paper, a delay assist mode for a VAD by shortening the support time of VAD was put forward. Then, the effect of the delay mode on cardiac output, pulsation and the function of the aortic valve was observed by numerical method and the rules of hemodynamics were revealed. The research showed that compared with VAD supported in CS mode, the VAD using delay mode in systolic and diastolic period proposed in this paper could meet the demand of cardiac output perfusion and restore the function of the arterial valves. The open ratio of aortic valve (AV) and pulmonary valve (PV) increased with the time set in delay mode, and the blood through the AV/PV helped to balance the left and the right cardiac volume. Besides, delay mode also improved the pulsation index of arterial blood flow, which is conducive to the recovery of the ventricular pulse function of patients.
Cardiovascular System
;
Diastole
;
Heart Failure
;
Heart Rate
;
Heart-Assist Devices
;
Hemodynamics
;
Humans
;
Models, Cardiovascular

Result Analysis
Print
Save
E-mail