1.Chinese introduction to Preferred Reporting Items for Animal Studies in Endodontology 2021 checklist.
Xinxin CUI ; Xiao PANG ; Chang LIU ; Jian PAN ; Liao WANG ; Jiyuan LIU
West China Journal of Stomatology 2025;43(4):541-546
Animal experiments are crucial in evaluating the preclinical safety and efficacy of new dental materials, drugs, instruments, and equipment by identifying and eliminating potential health risks to humans. An international team of several dental experts formulated a guideline named Preferred Reporting Items for Animal Studiesin Endodontology (PRIASE) 2021. Consisting of 11 domains, 43 individual items, and a flowchart. PRIASE provides guidance for animal experiments in dentistry and improves the quality of experiment design and reporting. This work introduces the process and basic content of the guideline and interprets the key items of its checklist with specific examples to provide reference for the reporting of animal experiment in dentistry in China.
Animals
;
Animal Experimentation/standards*
;
Checklist
;
China
;
Endodontics
;
Guidelines as Topic
;
Research Design
2.Quality assessment of animal experimental studies on traditional Chinese medicine treatment of cervical radiculopathy.
Tian-Xiao FENG ; Xu WANG ; Han-Mei BU ; Xiao-Kuan QIN ; Chuan-Rui SUN ; Li-Guo ZHU ; Xu WEI
China Journal of Chinese Materia Medica 2024;49(21):5686-5694
This study aims to assess the methodological and reporting quality of animal experimental studies on the treatment of cervical radiculopathy(CR) with traditional Chinese medicine(TCM), analyze the deficiencies during the experimental process, and develop the methods to enhance the quality of such studies. The related articles were retrieved from CNKI, Wanfang, VIP, SinoMed, PubMed, EMbase, Cochrane Library, and Web of Science. The methodological quality and reporting quality of the included studies were evaluated according to the risk of bias tool of the Systematic Review Centre for Laboratory Animal Experimentation(SYRCLE) and the Animal Research: Reporting of in vivo Experiments(ARRIVE) 2.0 guidelines, respectively. A total of 4 086 articles were initially screened, in which 71 articles met the inclusion criteria. The SYRCLE's risk of bias tool revealed selection bias, performance bias, detection bias, and attrition bias of the included studies. The aspects for improvement were identified in the randomization of animal grouping, experimental implementation and outcome assessment, blinding, reporting baseline characteristics, and handling incomplete data. The essential item assessment of the ARRIVE 2.0 guidelines showed high risks in sample size determination, inclusion and exclusion criteria, randomization, blinding, outcome assessment, statistical methods, experimental procedures, and results reporting. Additionally, there were high risks in items recommended by ARRIVE 2.0 guidelines, including study background, ethical statements, animal care, interpretation/scientific implications, generalizability/translation, experimental protocol registration, data availability, and conflict of interest declaration. The existing animal experimental studies about the TCM treatment of CR exhibited methodological and reporting deficiencies. We recommend that researchers refer to the SYRCLE's risk of bias tool and the ARRIVE 2.0 guidelines to rigorously design, implement, and report experiments in a standardized manner, thereby enhancing the scientific, authentic, and reproducible properties of the experiments.
Radiculopathy/therapy*
;
Animals
;
Medicine, Chinese Traditional
;
Drugs, Chinese Herbal/administration & dosage*
;
Humans
;
Animal Experimentation/standards*
;
Disease Models, Animal
;
Research Design/standards*
3.Exploring the treatment of sepsis-associated acute lung injury with Liangge Powder via ERK1/2 and PI3K/AKT pathways: based on network pharmacology and whole animal experimentation.
Rui HUANG ; Wen Ju HE ; Ping Ping ZHANG ; Dong Qiang WANG
Chinese Journal of Industrial Hygiene and Occupational Diseases 2023;41(2):94-103
Objective: To investigate the therapeutic effect and mechanism of Liangge Powder against sepsis-induced acute lung injury (ALI) . Methods: From April to December 2021, the key components of Liangge Powder and its targets against sepsis-induced ALI were analyzed by network pharmacology, and to enrich for relevant signaling pathways. A total of 90 male Sprague-Dawley rats were randomly assigned to sham-operated group, sepsis-induced ALI model group (model group), Liangge Powder low, medium and high dose group, ten rats in the sham-operated group and 20 rats in each of the remaining four groups. Sepsis-induced ALI model was established by cecal ligation and puncture. Sham-operated group: gavage with 2 ml saline and no surgical treatment. Model group: surgery was performed and 2 ml saline was gavaged. Liangge Powder low, medium and high dose groups: surgery and gavage of Liangge Powder 3.9, 7.8 and 15.6 g/kg, respectively. To measure the wet/dry mass ratio of rats lung tissue and evaluate the permeability of alveolar capillary barrier. Lung tissue were stained with hematoxylin and eosin for histomorphological analysis. The levels of tumor necrosis factor-alpha (TNF-α), interleukin (IL) -6 and IL-1β in bronchoalveolar lavage fluid (BALF) were measured by enzyme-linked immunosorbent assay. The relative protein expression levels of p-phosphatidylinositol 3-kinase (PI3K), p-protein kinase B (AKT), and p-ertracellular regulated protein kinases (ERK) were detected via Western blot analysis. Results: Network pharmacology analysis indicated that 177 active compounds of Liangge Powder were selected. A total of 88 potential targets of Liangge Powder on sepsis-induced ALI were identified. 354 GO terms of Liangge Powder on sepsis-induced ALI and 108 pathways were identified using GO and KEGG analysis. PI3K/AKT signaling pathway was recognized to play an important role for Liangge Powder against sepsis-induced ALI. Compared with the sham-operated group, the lung tissue wet/dry weight ratio of rats in the model group (6.35±0.95) was increased (P<0.001). HE staining showed the destruction of normal structure of lung tissue. The levels of IL-6 [ (392.36±66.83) pg/ml], IL-1β [ (137.11±26.83) pg/ml] and TNF-α [ (238.34±59.36) pg/ml] were increased in the BALF (P<0.001, =0.001, <0.001), and the expression levels of p-PI3K, p-AKT and p-ERK1/2 proteins (1.04±0.15, 0.51±0.04, 2.31±0.41) were increased in lung tissue (P=0.002, 0.003, 0.005). The lung histopathological changes were reduced in each dose group of Liangge Powder compared with the model group. Compared with the model group, the wet/dry weight ratio of lung tissue (4.29±1.26) was reduced in the Liangge Powder medium dose group (P=0.019). TNF-α level [ (147.85±39.05) pg/ml] was reduced (P=0.022), and the relative protein expression levels of p-PI3K (0.37±0.18) and p-ERK1/2 (1.36±0.07) were reduced (P=0.008, 0.017). The wet/dry weight ratio of lung tissue (4.16±0.66) was reduced in the high-dose group (P=0.003). Levels of IL-6, IL-1β and TNF-α[ (187.98±53.28) pg/ml, (92.45±25.39) pg/ml, (129.77±55.94) pg/ml] were reduced (P=0.001, 0.027, 0.018), and relative protein expression levels of p-PI3K, p-AKT and p-ERK1/2 (0.65±0.05, 0.31±0.08, 1.30±0.12) were reduced (P=0.013, 0.018, 0.015) . Conclusion: Liangge Powder has therapeutic effects in rats with sepsis-induced ALI, and the mechanism may be related to the inhibition of ERK1/2 and PI3K/AKT pathway activation in lung tissue.
Male
;
Animals
;
Rats
;
Rats, Sprague-Dawley
;
Proto-Oncogene Proteins c-akt
;
Phosphatidylinositol 3-Kinase
;
Phosphatidylinositol 3-Kinases
;
Powders
;
Animal Experimentation
;
Interleukin-6
;
MAP Kinase Signaling System
;
Network Pharmacology
;
Tumor Necrosis Factor-alpha
;
Acute Lung Injury/drug therapy*
;
Sepsis/drug therapy*
4.Mechanism of Yanghe Decoction against subcutaneous tumor in pulmonary metastasis from breast cancer through HIF-1α signaling pathway regulating glycolysis:based on network pharmacology and animal experiment.
Yang-Jing LIU ; Xiao-Liu LI ; Chao-Qun MA ; De-Xuan CHEN ; Gao-Yuan WANG ; Tai-Yang ZHU
China Journal of Chinese Materia Medica 2023;48(9):2352-2359
This study aims to explore the mechanism of Yanghe Decoction(YHD) against subcutaneous tumor in pulmonary metastasis from breast cancer, which is expected to lay a basis for the treatment of breast carcinoma with YHD. The chemical components of medicinals in YHD, and the targets of the components were retrieved from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP) and SwissTargetPrediction. The disease-related targets were searched from GeneCards and Online Mendelian Inheritance in Man(OMIM). Excel was employed to screen the common targets and plot the Venn diagram. The protein-protein interaction network was constructed. R language was used for Gene Ontology(GO) term enrichment and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment. A total of 53 female SPF Bablc/6 mice were randomized into normal group(same volume of normal saline, ig), model group(same volume of normal saline, ig), and low-dose and high-dose YHD groups(YHD, ig, 30 days), with 8 mice in normal group and 15 mice in each of the other groups. Body weight and tumor size was measured every day. Curves for body weight variation and growth of tumor in situ were plotted. In the end, the subcutaneous tumor sample was collected and observed based on hematoxylin and eosin(HE) staining. The mRNA and protein levels of hypoxia inducible factor-1α(HIF-1α), pyruvate kinase M2(PKM2), lactate dehydrogenase A(LDHA), and glucose transporter type 1(GLUT1) were detected by PCR and Western blot. A total of 213 active components of YHD and 185 targets against the disease were screened out. The hypothesis that YHD may regulate glycolysis through HIF-1α signaling pathway to intervene in breast cancer was proposed. Animal experiment confirmed that the mRNA and protein levels of HIF-1α, PKM2, LDHA, and GLUT1 in the high-and low-dose YHD groups were lower than those in the model group. YHD has certain inhibitory effect on subcutaneous tumor in pulmonary metastasis from breast cancer in the early stage, which may intervene pulmonary metastasis from breast cancer by regulating glycolysis through HIF-1α signaling pathway.
Female
;
Mice
;
Animals
;
Glucose Transporter Type 1/genetics*
;
Network Pharmacology
;
Animal Experimentation
;
Saline Solution
;
Drugs, Chinese Herbal/therapeutic use*
;
Medicine, Chinese Traditional
;
Signal Transduction
;
Glycolysis
;
RNA, Messenger
;
Neoplasms/drug therapy*
;
Molecular Docking Simulation
5.Animal experimental study on the effects of different levels of amputation on cardiovascular system.
Lei MIN ; Wentao JIANG ; Zhongyou LI ; Xiao LI ; Junjie DIAO ; Renjing LIU ; Tianxiang TAI ; Taoping BAI
Journal of Biomedical Engineering 2023;40(3):515-521
Vascular injury resulting from lower limb amputation leads to the redistribution of blood flow and changes in vascular terminal resistance, which can affect the cardiovascular system. However, there was no clear understanding of how different amputation levels affect the cardiovascular system in animal experiments. Therefore, this study established two animal models of above-knee amputation (AKA) and below-knee amputation (BKA) to explore the effects of different amputation levels on the cardiovascular system through blood and histopathological examinations. The results showed that amputation caused pathological changes in the cardiovascular system of animals, including endothelial injury, inflammation, and angiosclerosis. The degree of cardiovascular injury was higher in the AKA group than in the BKA group. This study sheds light on the internal mechanisms of amputation's impact on the cardiovascular system. Based on the amputation level of patients, the findings recommend more comprehensive and targeted monitoring after surgery and necessary interventions to prevent cardiovascular diseases.
Animals
;
Animal Experimentation
;
Cardiovascular System
;
Cardiovascular Diseases
;
Hypertension
;
Amputation, Surgical
6.Therapeutic effect and mechanism of non-polysaccharide fraction of Bletillae Rhizoma in treatment of gastric ulcer based on network pharmacology and animal experiment.
Jing-Xian FANG ; Lian ZHANG ; Jing LI ; Han-Rui ZHANG ; Dan LIU ; Jing NIE ; Xiao-Chuan YE
China Journal of Chinese Materia Medica 2023;48(16):4446-4458
The present study aimed to explore the therapeutic effect and mechanism of non-polysaccharide fraction of Bletillae Rhizoma in the treatment of gastric ulcer by network pharmacology and animal experiments. UPLC-Q-TOF-MS/MS was employed to chara-cterize the chemical components of non-polysaccharide fraction of Bletillae Rhizoma, and the common targets of Bletillae Rhizoma and gastric ulcer were screened out by network pharmacology. The "drug-component-target-disease" network was constructed. Protein-protein interaction(PPI) network was established by STRING. Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analyses were performed based on Matescape database to predict the therapeutic effect and mechanism of Bletillae Rhizoma. Finally, the gastric ulcer model was induced in mice by alcohol to verify the therapeutic effect and mechanism of non-polysaccharide fraction of Bletillae Rhizoma on gastric ulcer. Forty-seven chemical components were identified from non-polysaccharide fraction of Bletillae Rhizoma, among which gymnoside Ⅰ, gymnoside Ⅱ, militarine, bletilloside A, and shancigusin I might be the main active components of non-polysaccharide fraction of Bletillae Rhizoma against gastric ulcer. PPI network analysis revealed core targets such as albumin(ALB), serine/threonine kinase 1(AKT1), tumor necrosis factor(TNF), and epidermal growth factor receptor(EGFR). The KEGG enrichment analysis showed that non-polysaccharide fraction of Bletillae Rhizoma mainly exerted the therapeutic effect by regulating the phosphatidylinositol 3-kinase(PI3K)/protein kinase B(AKT) signaling pathway, mitogen-activated protein kinase(MAPK) signaling pathway, and Ras signaling pathway. The results of animal experiments showed that non-polysaccharide fraction of Bletillae Rhizoma could significantly improve alcohol-induced ulceration in mice to increase ulcer inhibition rate, decrease the levels of TNF-α, interleukin(IL)-1β, IL-6, vasoactive intestinal peptide(VIP), and thromboxane B2(TXB2), elevated the le-vels of IL-10, prostaglandin E2(PGE2), epidermal growth factor(EGF), and vascular endothelial growth factor(VEGF), down-re-gulate the protein levels of PI3K and AKT, and up-regulate the protein levels of p-PI3K and p-AKT. This study indicates that Bletillae Rhizoma may play a role in the treatment of gastric ulcer through multiple components, targets, and pathways and verifies partial prediction results of network pharmacology. The findings of this study provide a scientific and experimental basis for clinical application.
Animals
;
Mice
;
Stomach Ulcer/drug therapy*
;
Proto-Oncogene Proteins c-akt
;
Animal Experimentation
;
Network Pharmacology
;
Phosphatidylinositol 3-Kinases
;
Tandem Mass Spectrometry
;
Vascular Endothelial Growth Factor A
;
Tumor Necrosis Factor-alpha
;
Molecular Docking Simulation
;
Drugs, Chinese Herbal/pharmacology*
7.Mechanism of Wuling Capsules against hepatic fibrosis based on network pharmacology and animal experiments.
Nan LI ; Su-Juan REN ; Rui ZHOU ; Zhong-Xing SONG ; Yan-Ru LIU ; Zhi-Shu TANG ; Jian-Ping ZHOU ; Zhao-Jun CAO
China Journal of Chinese Materia Medica 2023;48(19):5365-5376
The present study aimed to explore the underlying mechanism of Wuling Capsules in the treatment of hepatic fibrosis(HF) through network pharmacology, molecular docking, and animal experiments. Firstly, the chemical components and targets of Wuling Capsules against HF were searched from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP), Traditional Chinese Medicines Integrated Database(TCMID), GeneCards, and literature retrieval. The protein-protein interaction(PPI) network analysis was carried out on the common targets by STRING database and Cytoscape 3.9.1 software, and the core targets were screened, followed by Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analyses. Enrichment analysis was conducted on the core targets and the "drug-core component-target-pathway-disease" network was further constructed. Subsequently, molecular docking between core components and core targets was conducted using AutoDock Vina software to predict the underlying mechanism of action against HF. Finally, an HF model induced by CCl_4 was constructed in rats, and the general signs and liver tissue morphology were observed. HE and Masson staining were used to analyze the liver tissue sections. The effects of Wuling Capsules on the levels of inflammatory factors, hydroxyproline(HYP) levels, and core targets were analyzed by ELISA, RT-PCR, etc. A total of 445 chemical components of Wuling Capsules were screened, corresponding to 3 882 potential targets, intersecting with 1 240 targets of HF, and 47 core targets such as TNF, IL6, INS, and PIK3CA were screened. GO and KEGG enrichment analysis showed that the core targets mainly affected the process of cell stimulation response and metabolic regulation, involving cancer, PI3K-Akt, MAPK, and other signaling pathways. Molecular docking showed that the core components of Wuling Capsules, such as lucidenic acid K, ganoderic acid B, lucidenic acid N, saikosaponin Q2, and neocryptotanshinone, had high affinities with the core targets, such as TNF, IL6 and PIK3CA. Animal experiments showed that Wuling Capsules could reduce fat vacuole, inflammatory infiltration, and collagen deposition in rat liver, decrease the levels of inflammatory cytokines TNF-α, IL-6, and HYP, and downregulated the expressions of PI3K and Akt mRNA. This study suggests that the anti-HF effect of Wuling Capsules may be achieved by regulating the PI3K-Akt signaling pathway, reducing the levels of TNF-α and IL-6 inflammatory factors, and inhibiting the excessive deposition of collagen.
Animals
;
Rats
;
Interleukin-6
;
Network Pharmacology
;
Animal Experimentation
;
Tumor Necrosis Factor-alpha
;
Molecular Docking Simulation
;
Phosphatidylinositol 3-Kinases
;
Proto-Oncogene Proteins c-akt
;
Liver Cirrhosis/genetics*
;
Medicine, Chinese Traditional
;
Capsules
;
Class I Phosphatidylinositol 3-Kinases
;
Collagen
;
Drugs, Chinese Herbal/pharmacology*
8.Consideration on Animal Experiment in PET/CT.
Xiaofang GU ; Yaqing BAO ; Liping HE
Chinese Journal of Medical Instrumentation 2022;46(4):454-458
PET/CT imaging can reflect the physiological metabolic process in living body which is the model experiment incapable to simulate. Animal experiment may be considered for systematic validation of PET/CT products. The obtained research data can be used to evaluate the feasibility, effectiveness and safety of PET/CT products, and be submitted as supporting documents for research data or clinical evaluation data when doing product registration or alteration registration. In this study, the functions and advantages of animal experiments were expounded, and relevant research cases were given as well as the issues that should be paid attention to. It can be a reference for the validation and review of PET/CT products.
Animal Experimentation
;
Animals
;
Positron Emission Tomography Computed Tomography
;
Positron-Emission Tomography
;
Tomography, X-Ray Computed
9.Mechanism of Carthami Flos and Lepidii Semen drug pair in inhibition of myocardial fibrosis by improving cardiac microenvironment based on network pharmacology and animal experiment.
Yong WANG ; Zhen WANG ; Cheng WANG ; Du-Fang MA
China Journal of Chinese Materia Medica 2022;47(3):753-763
Previously, Carthami Flos and Lepidii Semen(CF-LS) drug pair has been proved effective in inhibiting myocardial fibrosis(MF) by blunting the activity of cardiac fibroblasts. The present study explored the underlying mechanism of CF-LS in inhibiting MF by improving the cardiac microenvironment based on network pharmacology combined with experimental verification. Active compounds and potential targets of CF-LS were retrieved from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP), and the potential targets of MF were obtained from GeneCards, Online Mendelian Inheritance in Man(OMIM), and Pharmacogenetics and Pharmacogenomics Knowledge Base(PharmGKB). The "active component-target-MF" network was constructed and analyzed by Cytoscape 3.8.1. The protein-protein interaction(PPI) network was constructed by STRING. The Gene Ontology(GO) biological process enrichment analysis was performed by CluoGO plug-in. Kyoto Encyclopedia of Genes and Genomes(KEGG) signaling pathway enrichment analysis was performed by R 4.0.2 and Funrich. Subsequently, the inhibitory effect of CF-LS on MF was investigated based on angiotensin Ⅱ(Ang Ⅱ)-induced MF rats. RT-PCR and ELISA were used to verify the effect of CF-LS on the targets of signaling pathways related to vascular endothelial cells predicted by the network pharmacology. Thirty-one active components and 204 potential targets of CF-LS, 4 671 MF-related targets, and 174 common targets were obtained. The network analysis showed that the key targets of CF-LS against MF included RAC-alpha serine/threonine-protein kinase(AKT1), transcription factor AP-1(JUN), mitogen-activated protein kinase 1(MAPK1), cellular tumor antigen p53(TP53), transcription factor p65(RELA), and mitogen-activated protein kinase 8(MAPK8). Biological processes mainly involved regulation of blood vessel diameter, regulation of blood vessel endothelial cell migration, cell death in response to oxidative stress, etc. Advanced glycation end products(AGE)-receptor for advanced glycation end products(RAGE) signaling pathway, phosphoinositide 3-kinase(PI3 K)-serine/threonine protein kinase(AKT) signaling pathway, hypoxia-inducible factor-1(HIF-1) signaling pathway, integrin signaling pathway, transforming growth factor-β(TGF-β) signaling pathway, etc. were involved in signaling pathway enrichment. Literature retrieval confirmed that some of these signaling pathways were closely related to vascular endothelial cells, including AGE-RAGE, PI3 K-AKT, HIF-1α, p53, the transcription factor activator protein-1(AP-1), integrin, p38 MAPK, and TGF-β. Animal experiments showed that CF-LS inhibited MF induced by Ang Ⅱ in rats by suppressing the expression of RAGE, HIF-1α, integrin β6, and TGF-β1. The inhibitory effect of CF-LS on MF has the characteristics of multiple components, multiple targets, and multiple pathways. CF-LS can inhibit MF by regulating the activity of vascular endothelial cells in the cardiac microenvironment.
Animal Experimentation
;
Animals
;
Drugs, Chinese Herbal/pharmacology*
;
Endothelial Cells
;
Fibrosis
;
Medicine, Chinese Traditional
;
Molecular Docking Simulation
;
Network Pharmacology
;
Phosphatidylinositol 3-Kinases
;
Rats
;
Semen
10.Effect and mechanism of Jingqi Yukui Capsules on gastric ulcer mucosa healing quality: based on network pharmacology and animal experiment.
Min-Jue FAN ; Yong-Qiang DUAN ; Neng-Lian LI ; Xiao-Yi YANG ; Jun MA ; Zi-Han GONG ; Dao-Kun WANG
China Journal of Chinese Materia Medica 2022;47(5):1350-1358
This study aims to identify the active components and the mechanism of Jingqi Yukui Capsules(JQYK) in the treatment of gastric ulcer based on network pharmacology, and verify some key targets and signaling pathways through animal experiment. To be specific, first, the active components and targets of JQYK were retrieved from a Bioinformatics Analysis Tool for Molecular Mechanism of Traditional Chinese Medicine(BATMAN-TCM) and Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP), and the targets of gastric ulcer from GeneCards and Online Mendelian Inheritance in Man(OMIM) with the search term "gastric ulcer". The common targets of the two were the potential targets of the prescription for the treatment of the di-sease. Then, protein-protein interaction(PPI) network of key targets were constructed based on STRING and Cytoscape 3.7.2, followed by Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment by matescape database and pathway visualization by Omicshare. For the animal experiment, the improved method of Okabe was used to induce gastric ulcer in rats, and the model rats were classified into the model group, JQYK high-dose(JQYK-H), medium-dose(JQYK-M), and low-dose(JQYK-L) groups, Anweiyang Capsules(WYA) group, and Rabeprazole Sodium Enteric Capsules(RBPZ) group. Normal rats were included in the blank group. Rats in the blank group and model group were given distilled water and those in the administration groups received corresponding drugs. Then gastric ulcer healing in rats was observed. The changes of the gastric histomorphology in rats were evaluated based on hematoxylin-eosin(HE) staining, and the content of inducible nitric oxide synthase(iNOS) in rat gastric tissue was detected with Coomassie brilliant blue method. The mRNA and protein levels of some proteins in rat gastric tissue were determined by real-time quantitative polymerase chain reaction(RT-qPCR) and Western blot(WB) to further validate some key targets and signaling pathways. A total of 206 active components and 535 targets of JQYK, 1 305 targets of gastric ulcer, and 166 common targets of the disease and the drug were yielded. According to PPI analysis and KEGG pathway enrichment analysis, multiple key targets, such as interleukin-6(IL-6), tumor necrosis factor(TNF), mitogen-activated protein kinase 1(MAPK1), MAPK3, and MAPK14, as well as nuclear factor kappa-B(NF-κB) signaling pathway, IL-17 signaling pathway, and leukocyte transendothelial migration in the top 20 key signaling pathways were closely related to inflammation. The key protein p38 MAPK and NF-κB signaling pathway were selected for further verification by animal experiment. The gastric ulcer in the JQYK-H group recovered nearly to the level in the blank group, with significant decrease in the content of iNOS in rat gastric tissue and significant reduction in the mRNA and phosphorylation levels of p38 MAPK and the mRNA and protein levels of NF-κB p65 in rat gastric tissue. The results indicated that JQYK can inhibit the phosphorylation of the key protein p38 MAPK and the expression of NF-κB p65 in the NF-κB signaling pathway, thereby exerting the anti-inflammatory effect and effectively improving the quality of gastric ulcer healing in rats. Thus, the animal experiment result verifies some predictions of network pharmacology.
Animal Experimentation
;
Animals
;
Capsules
;
Gastric Mucosa/metabolism*
;
Humans
;
Network Pharmacology
;
Rats
;
Stomach Ulcer/genetics*

Result Analysis
Print
Save
E-mail