1.Prevalence of rectal carbapenem-resistant organism colonization among neonates admitted in the neonatal intensive care unit of the Philippine General Hospital.
Krizia Joy A. CO ; Anna Lisa T. ONG-LIM
Pediatric Infectious Disease Society of the Philippines Journal 2025;26(1):12-21
OBJECTIVE
To determine the prevalence of rectal colonization with carbapenem-resistant organisms (CRO) among PGH neonatal intensive care unit (NICU) patients.
METHODOLOGYA prospective single-center observational study conducted over a 1-month period included all NICU 3 and cohort area patients admitted on April 24, 2024. Rectal swabs were collected for multidrug-resistant organism (MDRO) screening and repeated weekly for 1 month while admitted. Swabs were inoculated on chromogenic media, and isolates were identified and tested for antimicrobial sensitivity by disk diffusion. Clinical characteristics and outcomes were collected for 30 days from initial MDRO screening. Descriptive statistics were used to summarize the data.
RESULTSThe point prevalence of CRO colonization was 37% (14 of 38) at initial screening. There were 14 incident colonizations, hence the 4-week period prevalence of CRO colonization was 72.5% (29 of 40). The patients were mostly very preterm, very low birth weight neonates, majority were tested within the first 2 weeks of life, and half were exposed to meropenem at initial screening. Nosocomial infection developed in 29% and 64%, and 30-day mortality rate was 8% and 21% among initially non-CRO-colonized and CRO-colonized patients respectively. Despite high CRO colonization, no culture-proven CRO infection was observed. Surveillance screening documented persistent CRO colonization in 37%, but no decolonization. Escherichia coli, Klebsiella spp. and Serratia spp. were the most common colonizers.
CONCLUSIONThe high prevalence of rectal CRO colonization in the NICU emphasizes the burden of antimicrobial resistance, but despite the high CRO colonization, no CRO infection was documented from the limited sample and study period.
Human ; Infant, Newborn ; Carbapenem-resistant Enterobacteriaceae ; Multidrug Resistance ; Drug Resistance, Multiple
2.Antimicrobial resistance profile of Escherichia coli isolated from raw chicken meat in a selected wet market in Manila City, Philippines.
Lyder Kyle A. DIMAAPI ; Angela Lorraine G. DELA CRUZ ; Roger Andrei D. FRANCISCO ; Rei Gilian D. NOBLE ; Hayley Emerald G. SABANGAN ; Azita Racquel GAVINO-LACUNA ; Maria Margarita M. LOTA
Acta Medica Philippina 2025;59(9):107-122
BACKGROUND AND OBJECTIVE
Antimicrobial resistance (AMR) is a leading global public health concern as it resulted in more difficult-to-treat infections and fatalities. In the Philippines, drug-resistant E. coli, including multidrug-resistant (MDR), extended-spectrum beta-lactamase (ESBL)-producing, carbapenemase-producing carbapenem-resistant (CP-CR) E. coli, have been isolated from common food animals, increasing the risk of cross-contamination between humans, animals, and the environment. However, there is a lack of data on the distribution of E. coli in chicken meat in public wet markets. This study aims to describe the AMR profile of E. coli in raw chicken meat from retail stalls in a selected wet market in Manila City.
METHODSThis quantitative descriptive study characterized the AMR profile of E. coli isolated from 25 raw chicken meat samples from a wet market in Manila City. Antimicrobial susceptibility was determined through disk diffusion method against 23 antimicrobial agents in 16 antimicrobial classes. MDR E. coli were identified based on the resistance patterns. ESBL- and carbapenemase-producing capacities of the bacteria were tested through double disk synergy test and modified carbapenem inactivation method, respectively.
RESULTSTwenty-four out of 25 (96%) chicken samples contained E. coli isolates. Of these, 23 (96%) were classified as MDR. High resistance rates were observed against ampicillin (92%), tetracycline (88%), trimethoprim-sulfamethoxazole (83%), chloramphenicol (79%), ampicillin-sulbactam (75%), amoxicillin-clavulanic acid (67%), fosfomycin (67%), and streptomycin (54%). The majority of the E. coli isolates were still susceptible to a wide range of selected antimicrobial agents, including carbapenems (100%), ceftriaxone (100%), cefepime (100%), cefuroxime (96%), cefotaxime (96%), ceftazidime (96%), piperacillin-tazobactam (96%), aztreonam (96%), cefoxitin (92%), and nitrofurantoin (83%), among others. Meanwhile, none of the 24 isolated E. coli samples were classified as ESBL- and CP-CR E. coli.
CONCLUSIONAmong the 25 chicken samples, 24 E. coli colonies were isolated that exhibited 0% to 92% resistance rates against selected antimicrobial agents. Most isolates were classified as MDR, but none were considered ESBLand CP-CR E. coli. This study suggests that chickens in wet markets can potentially serve as reservoir hosts for drugresistance genes, which could transfer to other bacteria and contaminate humans, animals, and the environment within the food production and supply chain. These findings emphasize the need for AMR surveillance and strategies to combat AMR in the Philippines through the One Health approach.
Human ; Drug Resistance ; Drug Resistance, Multiple ; Carbapenemase ; Escherichia Coli
3.Antimicrobial resistance profile of Escherichia coli isolated from raw chicken meat in a selected wet market in Manila City, Philippines
Lyder Kyle A. Dimaapi ; Angela Lorraine G. Dela Cruz ; Roger Andrei D. Francisco ; Rei Gilian D. Noble ; Hayley Emerald G. Sabangan ; Azita Racquel Gavino-Lacuna ; Maria Margarita M. Lota
Acta Medica Philippina 2024;58(Early Access 2024):1-16
Background and Objective:
Antimicrobial resistance (AMR) is a leading global public health concern as it resulted in more difficult-to-treat infections and fatalities. In the Philippines, drug-resistant E. coli, including multidrug-resistant (MDR), extended-spectrum beta-lactamase (ESBL)-producing, carbapenemase-producing carbapenem-resistant (CP-CR) E. coli, have been isolated from common food animals, increasing the risk of cross-contamination between humans, animals, and the environment. However, there is a lack of data on the distribution of E. coli in chicken meat in public wet markets. This study aims to describe the AMR profile of E. coli in raw chicken meat from retail stalls in a selected wet market in Manila City.
Methods:
This quantitative descriptive study characterized the AMR profile of E. coli isolated from 25 raw chicken meat samples from a wet market in Manila City. Antimicrobial susceptibility was determined through disk diffusion method against 23 antimicrobial agents in 16 antimicrobial classes. MDR E. coli were identified based on the resistance patterns. ESBL- and carbapenemase-producing capacities of the bacteria were tested through double disk synergy test and modified carbapenem inactivation method, respectively.
Results:
Twenty-four out of 25 (96%) chicken samples contained E. coli isolates. Of these, 23 (96%) were classified as MDR. High resistance rates were observed against ampicillin (92%), tetracycline (88%), trimethoprim-sulfamethoxazole (83%), chloramphenicol (79%), ampicillin-sulbactam (75%), amoxicillin-clavulanic acid (67%), fosfomycin (67%), and streptomycin (54%). The majority of the E. coli isolates were still susceptible to a wide range of selected antimicrobial agents, including carbapenems (100%), ceftriaxone (100%), cefepime (100%), cefuroxime (96%), cefotaxime (96%), ceftazidime (96%), piperacillin-tazobactam (96%), aztreonam (96%), cefoxitin (92%), and nitrofurantoin (83%), among others. Meanwhile, none of the 24 isolated E. coli samples were classified as ESBL- and CP-CR E. coli.
Conclusion
Among the 25 chicken samples, 24 E. coli colonies were isolated that exhibited 0% to 92% resistance rates against selected antimicrobial agents. Most isolates were classified as MDR, but none were considered ESBLand CP-CR E. coli. This study suggests that chickens in wet markets can potentially serve as reservoir hosts for drugresistance genes, which could transfer to other bacteria and contaminate humans, animals, and the environment within the food production and supply chain. These findings emphasize the need for AMR surveillance and strategies to combat AMR in the Philippines through the One Health approach.
drug resistance
;
multi-drug resistance
;
drug resistance, multiple
;
carbapenemase
;
Escherichia coli
4.Antimicrobial consumption and resistance of restricted antibiotics in a Level III government hospital.
Mary Anne Abeleda ; Imelda Peñ ; a ; Roderick Salenga ; Francis Capule ; Shiela Mae Nacabu-an ; Pamela Nala
Acta Medica Philippina 2024;58(16):68-76
OBJECTIVES
The objectives of the study were to determine the antibiotic consumption of restricted antibiotics and to correlate this with resistance rate.
METHODSA retrospective review of pharmacy dispensing records was conducted in the adult internal medicine wards of a tertiary level teaching hospital in the Philippines between March 2019 to February 2020. Antibiotic consumption was determined using Defined Daily Dose (DDD) per 1000 patient-days (PD). Correlations between antibiotic consumption and antibiotic resistance of restricted antibiotics were done. Outcomes were compared between Ward 1 (with the presence of a unit-dose pharmacist) and Ward 3 (without a unit-dose pharmacist).
RESULTSBoth wards showed decreasing trends of piperacillin-tazobactam consumption and increasing trends of ceftazidime consumption from quarter 1 to quarter 4. It was observed that levofloxacin was the most prescribed fluoroquinolone with the highest consumption recorded from March to May 2019 in Ward 3 of 350.2 DDD/1000 PD as compared with ciprofloxacin which has the highest consumption (23.3 DDD/1000 PD) during the period June to August 2019 in Ward 1. Antibiotic resistance of Acinetobacter baumannii against ciprofloxacin, levofloxacin, and piperacillin-tazobactam were statistically significantly different between the wards. In Ward 1, ciprofloxacin consumption was strongly positively correlated with Escherichia coli resistance (r = 0.90). In Ward 3, a significantly moderately positive association was observed for ceftazidime consumption and A. baumannii resistance (r = 0.61), positive correlation between piperacillin-tazobactam and E. coli resistance (r = 0.65), and a strong positive correlation in Ward 3 between levofloxacin and Pseudomonas aeruginosa resistance (r = 0.71).
CONCLUSIONThe restriction and pre-authorization strategy of the AMS program has greatly contributed to the decrease in the consumption of almost all restricted antibiotics. This strategy has been helpful in minimizing unnecessary antibiotic use associated with inappropriate drug therapy. The success of the AMS program has been based on the collective efforts of the AMS team with the implementation of hospital policies, such as the AMS program, across the different sites in the hospital in order to achieve optimum patient health outcomes. It was noted that the resistance rates of A. baumannii against ciprofloxacin, levofloxacin, and piperacillin-tazobactam were higher in Ward 3 compared to Ward 1 which makes infections very difficult to treat which may result to prolonged hospital stay, increased health-care costs and increased mortality rate. This study has supported the involvement of pharmacists in the AMS team by conducting auditing activities that promote safe compliance of restricted antibiotic use among patients. Pharmacists can greatly participate on either prospective or retrospective review of antibiotic utilization and analyze trends of antibiotic consumption data to provide feedback to prescribing physicians on prescribing patterns and possible correlation with occurrence of antibiotic resistance.
Antibiotic Resistance ; Drug Resistance, Microbial
5.Evaluation of Microsphere-based xMAP Test for gyrA Mutation Identification in Mycobacterium Tuberculosis.
Xi Chao OU ; Bing ZHAO ; Ze Xuan SONG ; Shao Jun PEI ; Sheng Fen WANG ; Wen Cong HE ; Chun Fa LIU ; Dong Xin LIU ; Rui Da XING ; Hui XIA ; Yan Lin ZHAO
Biomedical and Environmental Sciences 2023;36(4):384-387
6.Genotyping Characteristics of Human Fecal Escherichia coli and Their Association with Multidrug Resistance in Miyun District, Beijing.
Wei Wei ZHANG ; Xiao Lin ZHU ; Le Le DENG ; Ya Jun HAN ; Zhuo Wei LI ; Jin Long WANG ; Yong Liang CHEN ; Ao Lin WANG ; Er Li TIAN ; Bin CHENG ; Lin Hua XU ; Yi Cong CHEN ; Li Li TIAN ; Guang Xue HE
Biomedical and Environmental Sciences 2023;36(5):406-417
OBJECTIVE:
To explore the genotyping characteristics of human fecal Escherichia coli( E. coli) and the relationships between antibiotic resistance genes (ARGs) and multidrug resistance (MDR) of E. coli in Miyun District, Beijing, an area with high incidence of infectious diarrheal cases but no related data.
METHODS:
Over a period of 3 years, 94 E. coli strains were isolated from fecal samples collected from Miyun District Hospital, a surveillance hospital of the National Pathogen Identification Network. The antibiotic susceptibility of the isolates was determined by the broth microdilution method. ARGs, multilocus sequence typing (MLST), and polymorphism trees were analyzed using whole-genome sequencing data (WGS).
RESULTS:
This study revealed that 68.09% of the isolates had MDR, prevalent and distributed in different clades, with a relatively high rate and low pathogenicity. There was no difference in MDR between the diarrheal (49/70) and healthy groups (15/24).
CONCLUSION
We developed a random forest (RF) prediction model of TEM.1 + baeR + mphA + mphB + QnrS1 + AAC.3-IId to identify MDR status, highlighting its potential for early resistance identification. The causes of MDR are likely mobile units transmitting the ARGs. In the future, we will continue to strengthen the monitoring of ARGs and MDR, and increase the number of strains to further verify the accuracy of the MDR markers.
Humans
;
Escherichia coli/genetics*
;
Escherichia coli Infections/epidemiology*
;
Multilocus Sequence Typing
;
Genotype
;
Beijing
;
Drug Resistance, Multiple, Bacterial/genetics*
;
Anti-Bacterial Agents/pharmacology*
;
Diarrhea
;
Microbial Sensitivity Tests
7.Advances in genomics of multi-drug resistant Stenotrophomonas.
Yuhang TANG ; Shiqi FANG ; Linlin XIE ; Chao SUN ; Shanshan LI ; Aiping ZHOU ; Guangxiang CAO ; Jun LI
Chinese Journal of Biotechnology 2023;39(4):1314-1331
Stenotrophomonas species are non-fermentative Gram-negative bacteria that are widely distributed in environment and are highly resistant to numerous antibiotics. Thus, Stenotrophomonas serves as a reservoir of genes encoding antimicrobial resistance (AMR). The detection rate of Stenotrophomonas is rapidly increasing alongside their strengthening intrinsic ability to tolerate a variety of clinical antibiotics. This review illustrated the current genomics advances of antibiotic resistant Stenotrophomonas, highlighting the importance of precise identification and sequence editing. In addition, AMR diversity and transferability have been assessed by the developed bioinformatics tools. However, the working models of AMR in Stenotrophomonas are cryptic and urgently required to be determined. Comparative genomics is envisioned to facilitate the prevention and control of AMR, as well as to gain insights into bacterial adaptability and drug development.
Stenotrophomonas/genetics*
;
Drug Resistance, Bacterial/genetics*
;
Anti-Bacterial Agents/pharmacology*
;
Gram-Negative Bacteria
;
Genomics
;
Microbial Sensitivity Tests
8.Correlation between ARID5B Gene SNP and MTX Resistance in Children with ALL.
Li-Fen ZHANG ; Yu MA ; Lian LI ; Wen-E LIU ; Xiao-Chun ZHANG
Journal of Experimental Hematology 2023;31(2):333-337
OBJECTIVE:
To investigate the correlation between single-nucleotide polymorphism (SNP) of ARID5B gene and resistance to methotrexate (MTX) in children with acute lymphoblastic leukemia (ALL).
METHODS:
A total of 144 children with ALL who were treated in General Hospital of Ningxia Medical University from January 2015 to November 2021 were enrolled and divided into MTX resistant group and non-MTX resistant group, with 72 cases in each group. Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) technology was used to measure the SNP of ARID5B gene in all children and analyze its correlation with MTX resistant.
RESULTS:
There were no significant differences in the genotype and gene frequency of rs7923074, rs10821936, rs6479778, and rs2893881 between MTX resistant group and non-MTX resistant group (P>0.05). The frequency of C/C genotype in the MTX resistant group was significantly higher than that in the non-MTX resistant group, while the frequency of T/T genotype was opposite (P<0.05). The frequency of C allele in the MTX resistant group was significantly higher than that in the non-MTX resistant group, while the frequency of T allele was opposite (P<0.05). Multivariate logistic regression analysis showed that ARID5B gene rs4948488 TT genotype and T allele frequency were risk factors for MTX resistant in ALL children (P<0.05).
CONCLUSION
The SNP of ARID5B gene is associated with MTX resistant in ALL children.
Child
;
Humans
;
DNA-Binding Proteins/genetics*
;
Gene Frequency
;
Genotype
;
Methotrexate
;
Polymorphism, Single Nucleotide
;
Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics*
;
Transcription Factors/genetics*
;
Drug Resistance, Neoplasm
9.Distribution and Drug Sensitivity Analysis of Pathogenic Bacteria Isolated from Patients in Hematology Department.
Li QIAN ; Wen-Ying XIA ; Fang NI ; Xiao-Hui ZHANG
Journal of Experimental Hematology 2023;31(2):568-574
OBJECTIVE:
To investigate the distribution and drug sensitivity of pathogenic bacteria isolated from patients in hematology department, in order to provide evidence for rational use of antibiotics in clinic.
METHODS:
The distribution of pathogenic bacteria and drug sensitivity data of patients in the hematology department of The First Affiliated Hospital of Nanjing Medical University from 2015 to 2020 were retrospectively analyzed, and the pathogens isolated from different specimen types were compared.
RESULTS:
A total of 2 029 strains of pathogenic bacteria were isolated from 1 501 patients in the hematology department from 2015 to 2020, and 62.2% of which were Gram-negative bacilli, mainly Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Stenotrophomonas maltophilia and Acinetobacter baumannii. Gram-positive coccus accounted for 18.8%, mainly Coagulase-negative staphylococcus (CoNS) and Staphylococcus aureus. Fungi (17.4%) were mainly candida. The 2 029 strains were mainly isolated from respiratory tract (35.1%), blood (31.8%) and urine (19.2%) specimens. Gram-negative bacilli were the main pathogenic bacteria in different specimen types (>60%). K. pneumoniae, S. maltophilia and A. baumannii were the most common pathogens in respiratory specimens, E. coli, CoNS, K. pneumoniae and P. aeruginosa were common in blood samples, and E. coli and Enterococcus were most common in urine samples. Enterobacteriaceae had the highest susceptibility to amikacin and carbapenems (>90.0%), followed by piperacillin/tazobactam. P. aeruginosa strains had high sensitivity to antibiotics except aztreonam (<50.0%). The susceptibility of A. baumannii to multiple antibiotics was less than 70.0%. The antimicrobial resistance rates of E. coli and K. pneumoniae in respiratory tract specimens were higher than those in blood specimens and urine specimens.
CONCLUSION
Gram-negative bacilli are the main pathogenic bacteria isolated from patients in hematology department. The distribution of pathogens is different in different types of specimens, and the sensitivity of each strain to antibiotics is different. The rational use of antibiotics should be based on different parts of infection to prevent the occurrence of drug resistance.
Humans
;
Escherichia coli
;
Retrospective Studies
;
Bacteria
;
Anti-Bacterial Agents/therapeutic use*
;
Gram-Negative Bacteria
;
Drug Resistance
;
Pseudomonas aeruginosa
;
Hematology
10.Research Advance of BCR-ABL Mutation and the Efficacy of Second and Third Generation TKI in Chronic Myeloid Leukemia--Review.
Journal of Experimental Hematology 2023;31(2):585-588
The treatment of chronic myeloid leukemia (CML) was revolutionized with the advent of the first-generation tyrosine kinase inhibitors (TKIs), but drug resistance developed during treatment, leading to the development of the second-generation (dasatinib, nilotinib, and bosutinib) and third-generation (ponatinib) TKI. Compared with previous treatment regimens, specific TKI can significantly improve the response rate, overall survival rate and prognosis of CML. Only a few patients with BCR-ABL mutation are insensitive to the second-generation TKIs, so it is suggested to select the second-generation TKIs for patients with specific mutations. For patients with other mutations and without mutations, the second-generation TKI should be selected according to the patient's medical history, while the third-generation TKIs should be selected for mutations that are insensitive to the second-generation TKIs, such as T315I mutation that is sensitive to ponatinib. Due to different BCR-ABL mutations in patients with different sensitivity to the second and third-generation TKIs, this paper will review the latest research progress of the efficacy of the second and third-generation TKIs in CML patients with BCR-ABL mutations.
Humans
;
Antineoplastic Agents/pharmacology*
;
Dasatinib/pharmacology*
;
Drug Resistance, Neoplasm/genetics*
;
Fusion Proteins, bcr-abl/genetics*
;
Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy*
;
Mutation
;
Protein Kinase Inhibitors/therapeutic use*


Result Analysis
Print
Save
E-mail