1.Synergistic Effect and Mechanism of FUT8 Inhibitor 2FF With DOX for Cancer Treatment
Zhi-Dong XIE ; Xiao-Lian ZHANG
Progress in Biochemistry and Biophysics 2025;52(2):478-486
ObjectiveChemotherapy is one of the important therapeutic approaches for cancer treatment. However, the emergence of multidrug resistance and side effects significantly limit its application. To address these challenges, chemotherapy is often combined with other drugs or therapies. Among the 13 human fucosyltransferases (FUTs) identified, FUT8 (alpha-(1,6)-fucosyltransferase) is the only enzyme responsible for core fucosylation. Core fucosylation plays an important role in cancer occurrence, metastasis and chemotherapy resistance, making the suppression of FUT8 a potential strategy for reversing multidrug resistance. This study aims to evaluate the feasibility of combining the small molecule FUT8 inhibitor 2FF (2-deoxy-2-fluoro-L-fucose) with the clinical chemotherapeutic drug doxorubicin (DOX) for treating malignant tumors. MethodsThe human hepatocellular carcinoma cell line HepG2 and mouse colon cancer cell line CT26 cells were treated with 2FF, DOX or their combination and core fucosylation levels were assessed using Lectin blot. HepG2 and CT26 cells were exposed to 50 μmol/L 2FF for 72 h, followed by treatment with a gradient concentration of DOX for 24 h. Cell viability and IC50 values were determined via the CCK-8 assay. Transwell invasion assays were conducted to evaluate the combined effect of 2FF and DOX on the invasion ability of HepG2 cells. Flow cytometry was performed to analyze the impact of 2FF, DOX and their combination on membrane PD-L1 expression of HepG2 cells. To assess the in vivo effect, 6- to 8-week-old female BALB/c mice (20-25 g), were subcutaneously injected with 1×106 CT26 cells into the right axilla (four groups, six mice in each group). After the average tumor volume reached 100 mm3, mice were treated with DOX, 2FF, their combination, or saline (mock group) every other day. DOX was administrated intraperitoneally (2 mg/kg), 2FF intravenously (5 mg/kg), and the combination group, received the both treatment. Tumor size was measured every other day using a vernier caliper. ResultsThis study demonstrated that DOX upregulates the core fucosylation levels in HepG2 and CT26 cells,while 2FF effectively inhibits this DOX-induced effect. Furthermone, 2FF enhanced the sensitivity of HepG2 and CT26 cells to DOX. The combination of 2FF and DOX synergistically inhibited the invasion ability of HepG2 cells, and enhanced the anti-tumor efficacy of CT26 subcutaneous tumor model in BALB/c mice. However the combination treatment led to weight loss in mice. In addition, DOX increased the cell surface PD-L1 expression in HepG2 cells, which was effectively suppressed by 2FF. ConclusionThe FUT8 inhibitor 2FF effectively suppresses DOX-induced upregulation of core fucosylation and PD-L1 levels in tumor cells, and 2FF synergistically enhances the anticancer efficacy of DOX.
2.Effect and mechanism of ertugliflozin on pharmacokinetic of sorafenib and donafenib in rats
Yanru DENG ; Zhi WANG ; Gexi CAO ; Bin YAN ; Ying LI ; Zhanjun DONG
China Pharmacy 2025;36(7):826-831
OBJECTIVE To investigate the effects of ertugliflozin on pharmacokinetic of sorafenib and donafenib in rats and explore the mechanism. METHODS Twenty-four male SD rats were randomly divided into four groups, with 6 rats in each group. Groups A and B were respectively gavaged with 0.5% sodium carboxymethyl cellulose solution and ertugliflozin (1.5 mg/kg) for 7 consecutive days, and both were given sorafenib (100 mg/kg) on the 7th day. Groups C and D were administered intragastrically in the same way as those in Groups A and B, respectively, for the first 7 days; after the drug administration on the 7th day, all rats in Groups C and D were further gavaged with donafenib (40 mg/kg). Blood samples were collected at different time points before and after administration of sorafenib or donafenib, the concentrations of sorafenib in plasma of rats in groups A and B and donafenib in groups C and D were determined by UPLC-MS/MS method. The pharmacokinetic parameters were calculated by DAS 2.1.1 software. Six additional rats were randomly divided into blank control group and ertugliflozin group, with three rats in each group. Blank control group was given 0.5% sodium carboxymethyl cellulose intragastrically, while rats in ertugliflozin group were given ertugliflozin (1.5 mg/kg) once a day for 7 consecutive days. After the last administration, the mRNA expression levels of uridine diphosphate glucuronosyl transferase 1A7 (UGT1A7), breast cancer resistance protein (BCRP), and P-glycoprotein (P-gp) in the liver and small intestine tissues of the rats were detected. RESULTS Compared with group A, the AUC0-t, AUC0-∞, cmax, tmax, MRT0-t and MRT0-∞ of sorafenib in group B were decreased significantly, while CL and V were increased significantly. Compared with group C, the AUC0-t, AUC0-∞ , tmax, cmax and MRT0-t of Δ donafenib in group D were decreased significantly, while V and CL were increased significantly (P<0.05). mRNA expression of UGT1A7, P-gp and BCRP in the liver tissue and small intestine of rats were not significantly affected after intragastric administration of ertugliflozin for 7 consecutive days. CONCLUSIONS Ertugliflozin can affect the pharmacokinetics of sorafenib and donafenib in rats and decrease the plasma exposure of them significantly. However, its mechanism of action may not be through the regulation of related metabolic enzymes and transporters. When using drugs in combination clinically, one should be vigilant about the potential for disease progression due to poor therapeutic effects.
3.Eye Movement and Gait Variability Analysis in Chinese Patients With Huntington’s Disease
Shu-Xia QIAN ; Yu-Feng BAO ; Xiao-Yan LI ; Yi DONG ; Zhi-Ying WU
Journal of Movement Disorders 2025;18(1):65-76
Objective:
Huntington’s disease (HD) is characterized by motor, cognitive, and neuropsychiatric symptoms. Oculomotor impairments and gait variability have been independently considered as potential markers in HD. However, an integrated analysis of eye movement and gait is lacking. We performed multiple examinations of eye movement and gait variability in HTT mutation carriers, analyzed the consistency between these parameters and clinical severity, and then examined the associations between oculomotor impairments and gait deficits.
Methods:
We included 7 patients with pre-HD, 30 patients with HD and 30 age-matched controls. We collected demographic data and assessed the Unified Huntington’s Disease Rating Scale (UHDRS) score. Examinations, including saccades, smooth pursuit tests, and optokinetic (OPK) tests, were performed to evaluate eye movement function. The parameters of gait include stride length, walking velocity, step deviation, step length, and gait phase.
Results:
HD patients have significant impairments in the latency and velocity of saccades, the gain of smooth pursuit, and the gain and slow phase velocities of OPK tests. Only the speed of saccades significantly differed between pre-HD patients and controls. There are significant impairments in stride length, walking velocity, step length, and gait phase in HD patients. The parameters of eye movement and gait variability in HD patients were consistent with the UHDRS scores. There were significant correlations between eye movement and gait parameters.
Conclusion
Our results show that eye movement and gait are impaired in HD patients and that the speed of saccades is impaired early in pre-HD. Eye movement and gait abnormalities in HD patients are significantly correlated with clinical disease severity.
4.Eye Movement and Gait Variability Analysis in Chinese Patients With Huntington’s Disease
Shu-Xia QIAN ; Yu-Feng BAO ; Xiao-Yan LI ; Yi DONG ; Zhi-Ying WU
Journal of Movement Disorders 2025;18(1):65-76
Objective:
Huntington’s disease (HD) is characterized by motor, cognitive, and neuropsychiatric symptoms. Oculomotor impairments and gait variability have been independently considered as potential markers in HD. However, an integrated analysis of eye movement and gait is lacking. We performed multiple examinations of eye movement and gait variability in HTT mutation carriers, analyzed the consistency between these parameters and clinical severity, and then examined the associations between oculomotor impairments and gait deficits.
Methods:
We included 7 patients with pre-HD, 30 patients with HD and 30 age-matched controls. We collected demographic data and assessed the Unified Huntington’s Disease Rating Scale (UHDRS) score. Examinations, including saccades, smooth pursuit tests, and optokinetic (OPK) tests, were performed to evaluate eye movement function. The parameters of gait include stride length, walking velocity, step deviation, step length, and gait phase.
Results:
HD patients have significant impairments in the latency and velocity of saccades, the gain of smooth pursuit, and the gain and slow phase velocities of OPK tests. Only the speed of saccades significantly differed between pre-HD patients and controls. There are significant impairments in stride length, walking velocity, step length, and gait phase in HD patients. The parameters of eye movement and gait variability in HD patients were consistent with the UHDRS scores. There were significant correlations between eye movement and gait parameters.
Conclusion
Our results show that eye movement and gait are impaired in HD patients and that the speed of saccades is impaired early in pre-HD. Eye movement and gait abnormalities in HD patients are significantly correlated with clinical disease severity.
5.Eye Movement and Gait Variability Analysis in Chinese Patients With Huntington’s Disease
Shu-Xia QIAN ; Yu-Feng BAO ; Xiao-Yan LI ; Yi DONG ; Zhi-Ying WU
Journal of Movement Disorders 2025;18(1):65-76
Objective:
Huntington’s disease (HD) is characterized by motor, cognitive, and neuropsychiatric symptoms. Oculomotor impairments and gait variability have been independently considered as potential markers in HD. However, an integrated analysis of eye movement and gait is lacking. We performed multiple examinations of eye movement and gait variability in HTT mutation carriers, analyzed the consistency between these parameters and clinical severity, and then examined the associations between oculomotor impairments and gait deficits.
Methods:
We included 7 patients with pre-HD, 30 patients with HD and 30 age-matched controls. We collected demographic data and assessed the Unified Huntington’s Disease Rating Scale (UHDRS) score. Examinations, including saccades, smooth pursuit tests, and optokinetic (OPK) tests, were performed to evaluate eye movement function. The parameters of gait include stride length, walking velocity, step deviation, step length, and gait phase.
Results:
HD patients have significant impairments in the latency and velocity of saccades, the gain of smooth pursuit, and the gain and slow phase velocities of OPK tests. Only the speed of saccades significantly differed between pre-HD patients and controls. There are significant impairments in stride length, walking velocity, step length, and gait phase in HD patients. The parameters of eye movement and gait variability in HD patients were consistent with the UHDRS scores. There were significant correlations between eye movement and gait parameters.
Conclusion
Our results show that eye movement and gait are impaired in HD patients and that the speed of saccades is impaired early in pre-HD. Eye movement and gait abnormalities in HD patients are significantly correlated with clinical disease severity.
6.Effects of Shugan jieyu capsules on the pharmacokinetics of voriconazole,rivaroxaban and apixaban in rats
Ying LI ; Chunhui SHAN ; Yizhen SONG ; Yinling MA ; Zhi WANG ; Caihui GUO ; Zhanjun DONG
China Pharmacy 2025;36(12):1470-1475
OBJECTIVE To investigate the effects of multiple doses of Shugan jieyu capsules on the pharmacokinetics of voriconazole, rivaroxaban and apixaban in rats. METHODS Male SD rats were randomly divided into voriconazole group (30 mg/kg), rivaroxaban group (2 mg/kg), apixaban group (0.5 mg/kg), Shugan jieyu capsules+voriconazole group (145 mg/kg+30 mg/kg), Shugan jieyu capsules+rivaroxaban group (145 mg/kg+2 mg/kg), Shugan jieyu capsules+apixaban group (145 mg/kg+0.5 mg/kg), with 6 rats in each group. After the rats in each group were consecutively administered solvent (0.5% sodium carboxymethyl cellulose solution) or Shugan jieyu capsules by intragastric gavage for 8 days, they were respectively given voriconazole, rivaroxaban and apixaban solution by intragastric gavage on the 8th day. Blood samples were then collected at different time points (in voriconazole group, rivaroxaban group and corresponding drug combination groups, blood was collected before administration and at 0.17, 0.34, 0.5, 0.75, 1, 1.5, 2, 3, 4, 5, 6, 8, 10 and 12 hours post-administration; in apixaban group and corresponding drug combination group, blood was collected before administration and at 0.08, 0.17, 0.25, 0.34, 0.5, 0.75, 1, 3, 5, 7, 10 and 12 hours post-administration). Ultra-high performance liquid chromatography-tandem mass spectrometry method was employed to determine the mass concentrations of voriconazole, rivaroxaban and apixaban in rat plasma. The main pharmacokinetic parameters of these drugs were calculated using a non-compartmental model, and the comparisons were made between groups. RESULTS Compared with single drug group, after multiple administrations of Shugan jieyu capsules, AUC0-t, AUC0-∞ and cmax of voriconazole were significantly decreased, while CLz/F was significantly increased, and tmax was also significantly prolonged (P<0.05). For rivaroxaban and apixaban, their tmax values were both significantly prolonged (P<0.05). However, there were no statistically significant differences in the other pharmacokinetic parameters between the two groups (P>0.05). CONCLUSIONS The combination of Shugan jieyu capsules can decrease the exposure, increase the clearance, and delay the peak concentration of oral voriconazole. However, it does not affect the exposure levels of rivaroxaban and apixaban, but it does delay the time to reach peak concentration for both drugs.
7.Development of an Analytical Software for Forensic Proteomic SAP Typing
Feng HU ; Meng-Jiao WANG ; Jia-Lei WU ; Dong-Sheng DING ; Zhi-Yuan YANG ; An-Quan JI ; Lei FENG ; Jian YE
Progress in Biochemistry and Biophysics 2025;52(9):2406-2416
ObjectiveThe proteome of biological evidence contains rich genetic information, namely single amino acid polymorphisms (SAPs) in protein sequences. However, due to the lack of efficient and convenient analysis tools, the application of SAP in public security still faces many challenges. This paper aims to meet the application requirements of SAP analysis for forensic biological evidence’s proteome data. MethodsThe software is divided into three modules. First, based on a built-in database of common non-synonymous single nucleotide polymorphisms (nsSNPs) and SAPs in East Asian populations, the software integrates and annotates newly identified exonic nsSNPs as SAPs, thereby constructing a customized SAP protein sequence database. It then utilizes a pre-installed search engine—either pFind or MaxQuant—to perform analysis and output SAP typing results, identifying both reference and variant types, along with their corresponding imputed nsSNPs. Finally, SAPTyper compares the proteome-based typing results with the individual’s exome-derived nsSNP profile and outputs the comparison report. ResultsSAPTyper accepts proteomic DDA mass spectrometry raw data (DDA acquisition mode) and exome sequencing results of nsSNPs as input and outputs the report of SAPs result. The pFind and Maxquant search engines were used to test the proteome data of 2 hair shafts of2 individuals, and both obtained SAP results. It was found that the results of the Maxquant search engine were slightly less than those of pFind. This result shows that SAPTyper can achieve SAP fingding function. Moreover, the pFind search engine was used to test the proteome data of 3 hair shafts from 1 European person and 1 African person in the literature. Among the sites fully matched by the literature method, sites detected by SAPTyper are also included; for semi-matching sites, that is, nsSNPs are heterozygous, both literature method and SAPTyper method had the risk of missing detection for one type of the allele. Comparing the analysis results of SAPTyper with the SAP test results reported in the literature, it was found that some imputed nsSNP sites identified by the literature method but not detected by SAPTyper had a MAF of less than 0.1% in East Asian populations, and therefore they were not included in the common nsSNP database of East Asian populations constructed by this software. Since the database construction of this software is based on the genetic variation information of East Asian populations, it is currently unable to effectively identify representative unique common variation sites in European or African populations, but it can still identify SAP sites shared by these populations and East Asian populations. ConclusionAn automated SAP analysis algorithm was developed for East Asian populations, and the software named SAPTyper was developed. This software provides a convenient and efficient analysis tool for the research and application of forensic proteomic SAP and has important application prospects in individual identification and phenotypic inference based on SAP.
8.Therapeutic potential of ion channel modulation in Alzheimer's disease.
Bing HUANG ; Cheng-Min YANG ; Zhi-Cheng LU ; Li-Na TANG ; Sheng-Long MO ; Chong-Dong JIAN ; Jing-Wei SHANG
Acta Physiologica Sinica 2025;77(2):327-344
Alzheimer's disease (AD), a prototypical neurodegenerative disorder, encompasses multifaceted pathological processes. As pivotal cellular structures within the central nervous system, ion channels play critical roles in regulating neuronal excitability, synaptic transmission, and neurotransmitter release. Extensive research has revealed significant alterations in the expression and function of ion channels in AD, implicating an important role of ion channels in the pathogenesis of abnormal Aβ deposition, neuroinflammation, oxidative stress, and disruptions in calcium homeostasis and neural network functionality. This review systematically summarizes the crucial roles and underlying mechanisms of ion channels in the onset and progression of AD, highlighting how these channel abnormalities contribute to AD pathophysiology. We also discuss the therapeutic potential of ion channel modulation in AD treatment, emphasizing the importance of addressing multifactorial nature and heterogeneity of AD. The development of multi-target drugs and precision therapies is proposed as a future direction of scientific research.
Alzheimer Disease/therapy*
;
Humans
;
Ion Channels/physiology*
;
Oxidative Stress
;
Animals
;
Amyloid beta-Peptides/metabolism*
;
Synaptic Transmission
;
Calcium/metabolism*
9.NAD+ metabolism in cardiovascular diseases.
Zhao-Zhi WEN ; Yi-Hang YANG ; Dong LIU ; Chong-Xu SHI
Acta Physiologica Sinica 2025;77(2):345-360
Cardiovascular diseases (CVDs) are the leading cause of death worldwide. Nicotinamide adenine dinucleotide (NAD+) is a central and pleiotropic metabolite involved in multiple cellular energy metabolism, such as cell signaling, DNA repair, protein modifications, and so on. Evidence suggests that NAD+ levels decline with age, obesity, and hypertension, which are all significant CVD risk factors. In addition, the therapeutic elevation of NAD+ levels reduces chronic low-grade inflammation, reactivates autophagy and mitochondrial biogenesis, and enhances antioxidation and metabolism in vascular cells of humans with vascular disorders. In preclinical animal models, NAD+ boosting also extends the health span, prevents metabolic syndrome, and decreases blood pressure. Moreover, NAD+ storage by genetic, pharmacological, or natural dietary NAD+-increasing strategies has recently been shown to be effective in improving the pathophysiology of cardiac and vascular health in different animal models and humans. Here, we discuss NAD+-related mechanisms pivotal for vascular health and summarize recent research on NAD+ and its association with vascular health and disease, including hypertension, atherosclerosis, and coronary artery disease. This review also assesses various NAD+ precursors for their clinical efficacy and the efficiency of NAD+ elevation in the prevention or treatment of major CVDs, potentially guiding new therapeutic strategies.
Humans
;
Cardiovascular Diseases/physiopathology*
;
NAD/metabolism*
;
Animals
;
Hypertension/metabolism*
10.The neurophysiological mechanisms of exercise-induced improvements in cognitive function.
Jian-Xiu LIU ; Bai-Le WU ; Di-Zhi WANG ; Xing-Tian LI ; Yan-Wei YOU ; Lei-Zi MIN ; Xin-Dong MA
Acta Physiologica Sinica 2025;77(3):504-522
The neurophysiological mechanisms by which exercise improves cognitive function have not been fully elucidated. A comprehensive and systematic review of current domestic and international neurophysiological evidence on exercise improving cognitive function was conducted from multiple perspectives. At the molecular level, exercise promotes nerve cell regeneration and synaptogenesis and maintains cellular development and homeostasis through the modulation of a variety of neurotrophic factors, receptor activity, neuropeptides, and monoamine neurotransmitters, and by decreasing the levels of inflammatory factors and other modulators of neuroplasticity. At the cellular level, exercise enhances neural activation and control and improves brain structure through nerve regeneration, synaptogenesis, improved glial cell function and angiogenesis. At the structural level of the brain, exercise promotes cognitive function by affecting white and gray matter volumes, neural activation and brain region connectivity, as well as increasing cerebral blood flow. This review elucidates how exercise improves the internal environment at the molecular level, promotes cell regeneration and functional differentiation, and enhances the brain structure and neural efficiency. It provides a comprehensive, multi-dimensional explanation of the neurophysiological mechanisms through which exercise promotes cognitive function.
Animals
;
Humans
;
Brain/physiology*
;
Cognition/physiology*
;
Exercise/physiology*
;
Nerve Regeneration/physiology*
;
Neuronal Plasticity/physiology*

Result Analysis
Print
Save
E-mail