1.Translational Research of Electromagnetic Fields on Diseases Related With Bone Remodeling: Review and Prospects
Peng SHANG ; Jun-Yu LIU ; Sheng-Hang WANG ; Jian-Cheng YANG ; Zhe-Yuan ZHANG ; An-Lin LI ; Hao ZHANG ; Yu-Hong ZENG
Progress in Biochemistry and Biophysics 2025;52(2):439-455
Electromagnetic fields can regulate the fundamental biological processes involved in bone remodeling. As a non-invasive physical therapy, electromagnetic fields with specific parameters have demonstrated therapeutic effects on bone remodeling diseases, such as fractures and osteoporosis. Electromagnetic fields can be generated by the movement of charged particles or induced by varying currents. Based on whether the strength and direction of the electric field change over time, electromagnetic fields can be classified into static and time-varying fields. The treatment of bone remodeling diseases with static magnetic fields primarily focuses on fractures, often using magnetic splints to immobilize the fracture site while studying the effects of static magnetic fields on bone healing. However, there has been relatively little research on the prevention and treatment of osteoporosis using static magnetic fields. Pulsed electromagnetic fields, a type of time-varying field, have been widely used in clinical studies for treating fractures, osteoporosis, and non-union. However, current clinical applications are limited to low-frequency, and research on the relationship between frequency and biological effects remains insufficient. We believe that different types of electromagnetic fields acting on bone can induce various “secondary physical quantities”, such as magnetism, force, electricity, acoustics, and thermal energy, which can stimulate bone cells either individually or simultaneously. Bone cells possess specific electromagnetic properties, and in a static magnetic field, the presence of a magnetic field gradient can exert a certain magnetism on the bone tissue, leading to observable effects. In a time-varying magnetic field, the charged particles within the bone experience varying Lorentz forces, causing vibrations and generating acoustic effects. Additionally, as the frequency of the time-varying field increases, induced currents or potentials can be generated within the bone, leading to electrical effects. When the frequency and power exceed a certain threshold, electromagnetic energy can be converted into thermal energy, producing thermal effects. In summary, external electromagnetic fields with different characteristics can generate multiple physical quantities within biological tissues, such as magnetic, electric, mechanical, acoustic, and thermal effects. These physical quantities may also interact and couple with each other, stimulating the biological tissues in a combined or composite manner, thereby producing biological effects. This understanding is key to elucidating the electromagnetic mechanisms of how electromagnetic fields influence biological tissues. In the study of electromagnetic fields for bone remodeling diseases, attention should be paid to the biological effects of bone remodeling under different electromagnetic wave characteristics. This includes exploring innovative electromagnetic source technologies applicable to bone remodeling, identifying safe and effective electromagnetic field parameters, and combining basic research with technological invention to develop scientifically grounded, advanced key technologies for innovative electromagnetic treatment devices targeting bone remodeling diseases. In conclusion, electromagnetic fields and multiple physical factors have the potential to prevent and treat bone remodeling diseases, and have significant application prospects.
2.Role and mechanism of platelet-derived growth factor BB in repair of growth plate injury
Hongcheng PENG ; Guoxuan PENG ; Anyi LEI ; Yuan LIN ; Hong SUN ; Xu NING ; Xianwen SHANG ; Jin DENG ; Mingzhi HUANG
Chinese Journal of Tissue Engineering Research 2025;29(7):1497-1503
BACKGROUND:In the initial stage of growth plate injury inflammation,platelet-derived growth factor BB promotes the repair of growth plate injury by promoting mesenchymal progenitor cell infiltration,chondrogenesis,osteogenic response,and regulating bone remodeling. OBJECTIVE:To elucidate the action mechanism of platelet-derived growth factor BB after growth plate injury. METHODS:PubMed,VIP,WanFang,and CNKI databases were used as the literature sources.The search terms were"growth plate injury,bone bridge,platelet-derived growth factor BB,repair"in English and Chinese.Finally,66 articles were screened for this review. RESULTS AND CONCLUSION:Growth plate injury experienced early inflammation,vascular reconstruction,fibroossification,structural remodeling and other pathological processes,accompanied by the crosstalk of chondrocytes,vascular endothelial cells,stem cells,osteoblasts,osteoclasts and other cells.Platelet-derived growth factor BB,as an important factor in the early inflammatory response of injury,regulates the injury repair process by mediating a variety of cellular inflammatory responses.Targeting the inflammatory stimulation mediated by platelet-derived growth factor BB may delay the bone bridge formation process by improving the functional activities of osteoclasts,osteoblasts,and chondrocytes,so as to achieve the injury repair of growth plate.Platelet-derived growth factor BB plays an important role in angiogenesis and bone repair tissue formation at the injured site of growth plate and intrachondral bone lengthening function of uninjured growth plate.Inhibition of the coupling effect between angiogenesis initiated by platelet-derived growth factor BB and intrachondral bone formation may achieve the repair of growth plate injury.
3.Application and Advance of Image Compression Algorithms in Medical Imaging
Jiawen SHANG ; Peng HUANG ; Zhixing CHANG ; Yuhan FAN ; Zhihui HU ; Ke ZHANG ; Jianrong DAI ; Hui YAN
Medical Journal of Peking Union Medical College Hospital 2025;16(5):1281-1290
Medical imaging technology plays a crucial role in clinical diagnosis and treatment. Image compression technology provides robust technical support for the storage and transmission of massive medical imaging data, serving as an effective safeguard for hospital data backup and telemedicine. The technology holds broad application prospects in the medical field, enabling the processing of various imaging modalities, multidimensional imaging, and medical video imaging. This study elaborates on general image and video compression algorithms, the application of compression algorithms in the medical field, and the performance metrics of medical image compression, thereby providing critical technical support for enhancing clinical diagnostic efficiency and data management security.
4.Alzheimer's disease diagnosis among dementia patients via blood biomarker measurement based on the AT(N) system.
Tianyi WANG ; Li SHANG ; Chenhui MAO ; Longze SHA ; Liling DONG ; Caiyan LIU ; Dan LEI ; Jie LI ; Jie WANG ; Xinying HUANG ; Shanshan CHU ; Wei JIN ; Zhaohui ZHU ; Huimin SUI ; Bo HOU ; Feng FENG ; Bin PENG ; Liying CUI ; Jianyong WANG ; Qi XU ; Jing GAO
Chinese Medical Journal 2025;138(12):1505-1507
5.Exosomes in obstructive sleep apnea-related diseases.
Zhifeng CHEN ; Yulin SHANG ; Yanru OU ; Subo GONG ; Xudong XIANG ; Xiaoying JI ; Yating PENG ; Ruoyun OUYANG
Chinese Medical Journal 2025;138(20):2540-2551
Obstructive sleep apnea (OSA) is a global public health concern characterized by repeated upper airway collapse during sleep. Research indicates that OSA is a risk factor for the development of various diseases, including cardiovascular disease, metabolic disorders, respiratory diseases, neurodegenerative diseases, and cancer. Exosomes, extracellular vesicles released by most cell types, play a key role in intercellular communication by transporting their contents-such as microRNA, messenger RNA, DNA, proteins, and lipids-to target cells. Intermittent hypoxia associated with OSA alters circulating exosomes and promotes a range of cellular structural and functional disturbances involved in the pathogenesis of OSA-related diseases. This review discusses the potential roles of exosomes and exosome-derived molecules in the onset and progression of OSA-associated diseases, explores the possible underlying mechanisms, and highlights novel strategies for developing exosome-based therapies for these conditions.
Humans
;
Exosomes/physiology*
;
Sleep Apnea, Obstructive/metabolism*
;
Animals
;
MicroRNAs/metabolism*
6.Segmentation of anterior cruciate ligament images by fusing inflated convolution and residual hybrid attention.
Journal of Biomedical Engineering 2025;42(2):246-254
Aiming at the problems of low accuracy and large difference of segmentation boundary distance in anterior cruciate ligament (ACL) image segmentation of knee joint, this paper proposes an ACL image segmentation model by fusing dilated convolution and residual hybrid attention U-shaped network (DRH-UNet). The proposed model builds upon the U-shaped network (U-Net) by incorporating dilated convolutions to expand the receptive field, enabling a better understanding of the contextual relationships within the image. Additionally, a residual hybrid attention block is designed in the skip connections to enhance the expression of critical features in key regions and reduce the semantic gap, thereby improving the representation capability for the ACL area. This study constructs an enhanced annotated ACL dataset based on the publicly available Magnetic Resonance Imaging Network (MRNet) dataset. The proposed method is validated on this dataset, and the experimental results demonstrate that the DRH-UNet model achieves a Dice similarity coefficient (DSC) of (88.01±1.57)% and a Hausdorff distance (HD) of 5.16±0.85, outperforming other ACL segmentation methods. The proposed approach further enhances the segmentation accuracy of ACL, providing valuable assistance for subsequent clinical diagnosis by physicians.
Humans
;
Magnetic Resonance Imaging/methods*
;
Anterior Cruciate Ligament/diagnostic imaging*
;
Image Processing, Computer-Assisted/methods*
;
Knee Joint/diagnostic imaging*
;
Neural Networks, Computer
;
Algorithms
;
Deep Learning
8.OGT-Mediated O-GlcNAcylation of ATF2 Protects Against Sepsis-Associated Encephalopathy by Inhibiting Microglial Pyroptosis.
Huan YAO ; Caixia LIANG ; Xueting WANG ; Chengwei DUAN ; Xiao SONG ; Yanxing SHANG ; Mingyang ZHANG ; Yiyun PENG ; Dongmei ZHANG
Neuroscience Bulletin 2025;41(10):1761-1778
Microglial pyroptosis and neuroinflammation have been implicated in the pathogenesis of sepsis-associated encephalopathy (SAE). OGT-mediated O-GlcNAcylation is involved in neurodevelopment and injury. However, its regulatory function in microglial pyroptosis and involvement in SAE remains unclear. In this study, we demonstrated that OGT deficiency augmented microglial pyroptosis and exacerbated secondary neuronal injury. Furthermore, OGT inhibition impaired cognitive function in healthy mice and accelerated the progression in SAE mice. Mechanistically, OGT-mediated O-GlcNAcylation of ATF2 at Ser44 inhibited its phosphorylation and nuclear translocation, thereby amplifying NLRP3 inflammasome activation and promoting inflammatory cytokine production in microglia in response to LPS/Nigericin stimulation. In conclusion, this study uncovers the critical role of OGT-mediated O-GlcNAcylation in modulating microglial activity through the regulation of ATF2 and thus protects against SAE progression.
Animals
;
Microglia/metabolism*
;
Pyroptosis/physiology*
;
Mice
;
Sepsis-Associated Encephalopathy/prevention & control*
;
Activating Transcription Factor 2/metabolism*
;
N-Acetylglucosaminyltransferases/genetics*
;
Mice, Inbred C57BL
;
Male
;
Mice, Knockout
9.Effect of Q Chromatography on the Recovery of Human Plasminogen in Affinity Chromatography
Shenglan YUE ; Taojing LI ; Juan LI ; Yan PENG ; Lianzhen LIN ; Yanxiang ZHOU ; Feifei WANG ; Chen ZHU ; Shang WANG ; Deming JI ; Shuangying ZENG ; Yong HU ; Zhijun ZHOU
Chinese Journal of Blood Transfusion 2025;38(10):1382-1388
Objective: To compare quality control (relative purity and specific activity) and process control [plasminogen (Pg) antigen recovery and potency recovery] indexes of samples before and after adding the Q chromatography step to the full chromatography process of human Pg, thereby determining whether the addition of this step could improve Pg recovery by affinity chromatography. Methods: A Q chromatography step was added before the Pg affinity chromatography in the original Pg chromatography process. The loading solution, flow through solution and eluate of Q chromatography and Pg affinity chromatography were collected. The potency of coagulation factor Ⅱ (FⅡ), Ⅶ (FⅦ), Ⅷ (FⅧ), Ⅸ (FⅨ), and Ⅹ(FⅩ) were detected by the coagulation method, the total protein content was detected by the BCA method, and the Pg potency was detected by the chromogenic substrate method. The content of specific plasma proteins was detected by immunoturbidimetry, the potency recovery of coagulation factors was calculated, and the flow direction of coagulation factors was analyzed. The recovery of different plasma protein antigens were calculated, and the distribution of impurity proteins was analyzed. The relative purity and specific activity of Pg, antigen content, and potency recovery in the target fractions were calculated and compared with the original process indicators, so as to determine the effect of adding Q chromatography on the original process. Furthermore, the reproducibility after process modification was assessed. Results: 100% of FⅡ, FⅩ, and FⅨ, 87.81% of FⅧ, and 40.44% of FⅦ in filtered plasma were removed by Q chromatography. The residual FⅦ (53.26%) and FⅧ (13.30%) in Q flow-through fraction were completely removed by Pg affinity chromatography. In both the original process (without Q-chromatography) and the modified process (with Q-chromatography), non-target plasma proteins mainly existed in the flow-through fraction of Pg affinity chromatography. The antigen recovery of IgM, ceruloplasmin (CER), and fibronectin (FNC) in Q-chromatography flow-through fraction were reduced. In contrast, antigen recovery of other plasma proteins [IgG, IgA, Pg, albumin (AlB), alpha-1-antitrypsin (AAT), and fibrinogen (Fg)] were all >90%, which were consistent with the protein composition and proportion in the original affinity chromatography loading solution. Compared with the recovery rate of Pg antigen in the original process (74.4%), the total recovery of Pg antigen in the modified process was significantly increased (89.97%). Compared with the recovery of IgG (97.48%) and Fg (95.32%) in the Pg affinity flows-through fraction of the original process, the modified process resulted in a slight reduction in the recovery of IgG (94.60%), while the recovery of Fg was not affected (95.05%). The potency recovery rate, specific activity, and relative purity of Pg after Q chromatography were 99.3%, 0.016 U/mg, and 0.15%. These values were the same as those of Pg affinity chromatography loading solution by the original process, indicating that introduction of Q chromatography did not affect subsequent Pg affinity chromatography. Compared with the recovery of Pg antigen in three batches of the original process (66.49±1.02)%, the recovery of Pg antigen in the affinity chromatography eluent of the modified process [five batches; (77.43±4.43)%] was significantly improved. Furthermore, the potency recovery was (86.80±4.28)%, the relative purity was (81.99±1.25)%, the specific activity was (8.679±1.073)U/mg, and the process was reproducible. Conclusion: The addition of Q chromatography could improve the recovery of Pg affinity chromatography in the full chromatography process.
10.Discussion on Traditional Chinese Medicine Theory and Pharmacological Mechanism of Xuanfei Baidu Prescription in Treatment of Viral Pneumonia
Yihao ZHANG ; Xin PENG ; Zheyu LUAN ; Yunfan WANG ; Jiaqi SHANG ; Jihong FENG
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(19):214-224
Viral pneumonia (VP) is an inflammatory disease caused by one or more viruses that infect the upper respiratory tract and spread downward. Causing varying degrees of pulmonary parenchymal damage, VP poses a serious threat to the society and public health. The treatment of VP now faces the dilemma of drug shortage, since Western medicine can only alleviate symptoms and lacks specific treatment methods. In traditional Chinese medicine (TCM), VP is assigned as an epidemic disease, with the etiology attributed to epidemic toxin and six excesses and the pathological factors of dampness, heat, toxin, deficiency, and stasis. The basic pathogenesis of VP is Yin-Yang imbalance, dysfunction of Zang-Fu organs, and healthy Qi deficiency. Accordingly, the treatment should follow the principle of replenishing healthy Qi and expelling pathogen. The treatment method of VP is mainly developed based on syndrome differentiation of six meridians, defense-Qi-nutrient-blood, and triple energizer. Xuanfei Baidu prescription (XFBD) is an effective prescription developed by Academician ZHANG Boli and Professor LIU Qingquan by literature research and selection of multi-component Chinese medicine. It is the product of modern research combined with TCM. XFBD is modified from Maxing Shigantang, Maxing Yigantang, Tingli Dazao Xiefeitang, Qianjin Weijingtang, and Buhuanjin Zhengqisan. It is mainly used to treat epidemic diseases with the syndrome of dampness toxin stagnating in the lung, with the effects of ventilating lung and resolving dampness, clearing heat and expelling pathogen, purging lung, and removing toxin, demonstrating the potential for the prevention and treatment of VP. This paper reviews the research progress of XFBD in combating VP in terms of the prescription composition, compatibility ideas, indications, and clinical new applications, as well as the pharmacological mechanisms of inhibiting virus, reducing inflammation, regulating immune system, ameliorating pulmonary fibrosis, and modulating intestinal flora. In addition, we put forward our thoughts and suggestions on the problems in the research, with a view to informing the clinical use of drugs and the basic research on the treatment of VP including COVID-19.

Result Analysis
Print
Save
E-mail