1.Risk Identification Model of Coronary Artery Stenosis Constructed Based on Random Forest
Yongfeng LV ; Yujing WANG ; Leyi ZHANG ; Yixin LI ; Na YUAN ; Jing TIAN
Journal of Sun Yat-sen University(Medical Sciences) 2025;46(1):138-146
ObjectiveTo establish a risk recognition model for coronary artery stenosis by using a machine learning method and to identify the key causative factors. MethodsPatients aged ≥18 years,diagnosed with coronary heart disease through coronary angiography from January 2013 to May 2020 in two prominent hospitals in Shanxi Province, were continuously enrolled. Logistic regression,back propagation neural network (BPNN), and random forest(RF)algorithms were used to construct models for detecting the causative factors of coronary artery stenosis. Sensitivity (TPR), specificity (TNR), accuracy (ACC), positive predictive value (PV+), negative predictive value (PV-), area under subject operating characteristic curve (AUC), and calibration curve were used to compare the discrimination and calibration performance of the models. The best model was then employed to predict the main risk variables associated with coronary stenosis. ResultsThe RF model exhibited superior comprehensive performance compared to logistic regression and BPNN models. The TPR values for logistic regression,BPNN,and RF models were 75.76%, 74.30%, and 93.70%, while ACC values were 74.05%, 72.30%, and 79.49%, respectively. The AUC values were:logistic regression 0.739 9; BPNN 0.723 1; RF 0.752 2. Manifestations such as chest pains,abnormal ST segments on ECG,ventricular premature beats with hypertension, atrial fibrillation, regional wall motion abnormalities(RWMA) by color echocardiography, aortic regurgitation(AR), pulmonary insufficiency (PI), family history of cardiovascular diseases,and body mass index(BMI)were identified as top ten important variables affecting coronary stenosis according to the RF model. ConclusionsRandom forest model shows the best comprehensive performance in identification and accurate assessment of coronary artery stenosis. The prediction of risk factors affecting coronary artery stenosis can provide a scientific basis for clinical intervention and help to formulate further diagnosis and treatment strategies so as to delay the disease progression.
2.Analysis of the Correlation between Plasma Fibrinogen and Osteoporosis Defined by Quantitative Computed Tomography
Yingna CHEN ; Kan SUN ; Na LI ; Chengzhi WANG ; Chulin HUANG ; Lingling LI ; Huisheng XIAO ; Guojuan LAO
Journal of Sun Yat-sen University(Medical Sciences) 2025;46(1):147-153
ObjectiveTo clarify the associations between plasma fibrinogen (Fbg) and volumetric bone mineral density (vBMD) as well as osteoporosis measured by quantitative computed tomography (QCT), and to explore the role of plasma Fbg in early screening and diagnosis of osteoporosis. MethodsPatients with hypertension who were hospitalized in the Department of Endocrinology of Sun Yat-sen Memorial Hospital of Sun Yat-sen University from January 2018 to June 2022 and underwent QCT examinations were included for cross-sectional analysis. The study analyzed the correlation between plasma Fbg and osteoporosis in patients. The diagnostic efficacy of plasma Fbg for osteoporosis was evaluated by the area under the receiver operating characteristic (ROC) curve (AUC). ResultsTotally 441 subjects were included in the analysis, with an average age of 46.0±14.5 years and a prevalence of osteoporosis of 6.4% (28/441). As the level of plasma fibrinogen increased, the incidence of osteoporosis significantly increased (P<0.000 1)while the average bone mineral density of L1 and L2 were significantly decreased (P<0.05). Compared with the first quartile of plasma Fbg(1.99g/L -2.37g/L), the risk of osteoporosis in the fourth quartile of plasma Fbg (3.67g/L-4.46g/L) increased by 8.85 times after adjusting for related confounding factors. ConclusionThis study found a negative correlation between plasma fibrinogen levels and bone density in patients with hypertension. Plasma fibrinogen levels may serve as a potential screening indicator for osteoporosis, aiding in early diagnosis and therapeutic monitoring. This discovery offers a new perspective for the study of bone metabolic diseases and warrants further investigation.
3.Bugansan Regulates R-spondin1/Wnt3a-mediated Intestinal Injury to Ameliorate Digestion and Absorption Dysfunction in Rat Model of Aging Induced by D-galactose
Yixuan WANG ; Ran HUO ; Jin TIAN ; Fang FANG ; Na LIU ; Jiepeng WANG ; Chaoyi FANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(9):19-27
ObjectiveTo elucidate the correlation between alterations in digestion and absorption functions and hepatic deficiency states in aging rats based on the R-spondin1/Wnt3a signaling pathway, and reveal the intervention mechanism of Bugansan. MethodsForty-eight SPF-grade male SD rats were randomly assigned to six groups: blank control, model, low-, medium-, and high-dose (7.03, 14.06, 28.12 g·kg-1, respectively) Bugansan, and vitamin E (suspension, 27 mg·kg-1), with 8 rats in each group. The rat model of aging was established by intraperitoneal injection of D-galactose (400 mg·kg-1), while the blank control group was injected with normal saline. Since the day of modeling, rats in intervention groups received corresponding agents by gavage, and those in blank control and model groups received an equal volume of normal saline (10 mL·kg-1). General biological features such as fur color, activity, body mass, water intake, and food intake were observed. Meanwhile, the content of malondialdehyde (MDA) and the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in the serum were measured to assess aging. Grip strength and the content of total bile acids (TBA) and the activity of α-amylase (AMY) in the serum were measured to evaluate hepatic deficiency states. The activity of β-galactosidase (β-gal) in the duodenum was measured to evaluate intestinal senescence. The levels of glucagon-like peptide-1 (GLP-1), vasoactive intestinal peptide (VIP), and D-xylose in the serum were determined to assess digestion and absorption functions of the small intestine. Hematoxylin-eosin staining was conducted to observe pathological changes of the duodenum to assess the small intestine damage. Immunohistochemical staining was employed to visualize the expression of B-cell-specific Moloney murine leukemia virus integration site 1 (Bmi1) and leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5) in the duodenal tissue. Moreover, Real-time quantitative polymerase chain reaction (Real-time PCR) was utilized to quantify the mRNA levels of Ki67, Bmi1, and Lgr5 to assess proliferation and regeneration of the small intestine. Additionally, the mRNA levels of R-spondin1, Wnt3a, β-catenin, and glycogen synthase kinase-3β (GSK-3β) and the protein levels of R-spondin1, Wnt3a, β-catenin, and phosphorylated GSK-3β (p-GSK-3β) in the duodenum were determined by Real-time PCR and Western blot, respectively, to analyze the mechanisms of intestinal digestion and absorption dysfunction in aging rats and the regulatory characteristics of Bugansan. ResultsCompared with blank control group, the model group showed decreases in body mass, water intake, food intake, grip strength, activities of SOD, GSH-Px, and AMY in the serum and content of GLP-1, VIP and D-xylose in the serum (P<0.05), increases in the content of MDA and TBA in the serum and β-gal activity in the duodenum (P<0.05), reductions in villus length, villus width, crypt depth, and villi/crypt (V/C) value, down-regulated mRNA and protein levels of Ki67, Lgr5, Bmi1, R-spondin1, Wnt3a, β-catenin, and up-regulated level of GSK-3β, phosphorylation (p)-GSK-3β (P<0.05). Compared with the model group, Bugansan increased the body mass, water intake, food intake, grip strength, and activities of SOD, GSH-Px, and AMY and levels of GLP-1, VIP and D-xylose in the serum (P<0.05), while decreasing the content of MDA and TBA in the serum and β-gal activity in the duodenum (P<0.05). Furthermore, Bugansan increased the villus length, villus width, crypt depth, and V/C value, up-regulated the mRNA and protein levels of Ki67, Lgr5, Bmi1, R-spondin1, Wnt3a, β-catenin, and down-regulated the level of GSK-3β and p-GSK-3β (P<0.05). ConclusionAging rats exhibit obvious impairments in digestion and absorption functions, accompanied by a state of hepatic deficiency. The traditional Chinese medicine approach of tonifying liver Qi effectively ameliorates aging-related changes by modulating the R-spondin1/Wnt3a signaling pathway to mitigate intestinal senescence and enhance digestion and absorption functions, ultimately contributing to the delay of aging.
4.Epidemiological characteristics and influencing factors of atrial fibrillation in Suqian in 2019-2023
Journal of Public Health and Preventive Medicine 2025;36(2):105-109
Objective To analyze epidemiological characteristics and influencing factors of atrial fibrillation (AF) in Suqian in 2019-2023. Methods A total of 1 869 patients with AF admitted to medical institutions in Suqian from January 2019 to December 2023 were selected as the survey subjects. The diagnosis and treatment data of the AF patients were retrospectively analyzed to explore epidemiological characteristics. A total of 2 000 healthy controls during the same period were selected as the control group. The influencing factors of AF were analyzed by univariate and multivariate logistic regression models. Results The incidence of AF in Suqian increased with the increase of year, age and labor intensity. The incidence rate was higher (>50%) in patients with male gender, old age, education level of junior high school and below, city living, heavy physical labor, smoking history, drinking history and underlying diseases (coronary heart disease, stroke, heart failure, hyperuricemia, hyperthyroidism, hypertension, diabetes mellitus, and hyperlipidemia). Multivariate logistic regression analysis showed that hyperuricemia, hyperthyroidism, cognitive dysfunction and anxiety/depression were influencing factors of AF in Suqian (P<0.05). Conclusion From 2019 to 2023, AF risk is relatively high in patients in Suqian, which is closely related to hyperuricemia, hyperthyroidism, cognitive dysfunction and anxiety/depression.
5.Heterogeneity of Adipose Tissue From a Single-cell Transcriptomics Perspective
Yong-Lang WANG ; Si-Si CHEN ; Qi-Long LI ; Yu GONG ; Xin-Yue DUAN ; Ye-Hui DUAN ; Qiu-Ping GUO ; Feng-Na LI
Progress in Biochemistry and Biophysics 2025;52(4):820-835
Adipose tissue is a critical energy reservoir in animals and humans, with multifaceted roles in endocrine regulation, immune response, and providing mechanical protection. Based on anatomical location and functional characteristics, adipose tissue can be categorized into distinct types, including white adipose tissue (WAT), brown adipose tissue (BAT), beige adipose tissue, and pink adipose tissue. Traditionally, adipose tissue research has centered on its morphological and functional properties as a whole. However, with the advent of single-cell transcriptomics, a new level of complexity in adipose tissue has been unveiled, showing that even under identical conditions, cells of the same type may exhibit significant variation in morphology, structure, function, and gene expression——phenomena collectively referred to as cellular heterogeneity. Single-cell transcriptomics, including techniques like single-cell RNA sequencing (scRNA-seq) and single-nucleus RNA sequencing (snRNA-seq), enables in-depth analysis of the diversity and heterogeneity of adipocytes at the single-cell level. This high-resolution approach has not only deepened our understanding of adipocyte functionality but also facilitated the discovery of previously unidentified cell types and gene expression patterns that may play key roles in adipose tissue function. This review delves into the latest advances in the application of single-cell transcriptomics in elucidating the heterogeneity and diversity within adipose tissue, highlighting how these findings have redefined the understanding of cell subpopulations within different adipose depots. Moreover, the review explores how single-cell transcriptomic technologies have enabled the study of cellular communication pathways and differentiation trajectories among adipose cell subgroups. By mapping these interactions and differentiation processes, researchers gain insights into how distinct cellular subpopulations coordinate within adipose tissues, which is crucial for maintaining tissue homeostasis and function. Understanding these mechanisms is essential, as dysregulation in adipose cell interactions and differentiation underlies a range of metabolic disorders, including obesity and diabetes mellitus type 2. Furthermore, single-cell transcriptomics holds promising implications for identifying therapeutic targets; by pinpointing specific cell types and gene pathways involved in adipose tissue dysfunction, these technologies pave the way for developing targeted interventions aimed at modulating specific adipose subpopulations. In summary, this review provides a comprehensive analysis of the role of single-cell transcriptomic technologies in uncovering the heterogeneity and functional diversity of adipose tissues.
6.Effects of isorhamnetin on the development of gastric cancer by up-regulating SLC25A25-AS1
Yang ZHANG ; Jing WANG ; Lisha NA ; Aoran ZENG ; Bowen PANG ; Yulin LIU
China Pharmacy 2025;36(8):932-938
OBJECTIVE To explore the effects of isorhamnetin on the development of gastric cancer through up-regulation of solute carrier family 25 member 25 antisense RNA 1(SLC25A25-AS1). METHODS Using BALB/c nude mice as the subjects, the xenograft tumor model was established by subcutaneously inoculating human gastric cancer MKN28 cells into the axillary region. The effects of low and high doses of isorhamnetin (20 and 40 mg/kg) on the tumor volume and mass in nude mice were investigated. MKN28 cells were selected and divided into control group, isorhamnetin group (70 μmol/L, similarly hereinafter), isorhamnetin+knocking down negative control group, isorhamnetin+knocking down SLC25A25-AS1 group, isorhamnetin+ overexpression negative control group and isorhamnetin+overexpressing SLC25A25-AS1 group. Effects of knocking down/ overexpressing SLC25A25-AS1 on viability, apoptosis, migration and invasion ability of isorhamnetin-treated cells were detected. After verifying the targeting relationships between microRNA-212-3p (miR-212-3p) and SLC25A25-AS1, as well as phosphatase and tensin homologue deleted on chromosome 10 (PTEN), the effects of knocking down/overexpressing SLC25A25-AS1 on the expression of miR-212-3p, PTEN mRNA, and PTEN protein in isorhamnetin-treated cells were investigated. RESULTS Compared with the model control group, tumor volume and mass of nude mice in the isorhamnetin low-dose and high-dose groups were reduced significantly, and the isorhamnetin high-dose group was significantly lower than the isorhamnetin low-dose group (P<0.05). miR-212-3p had targeting relationships with SLC25A25-AS1 and PTEN. Compared with the control group, the cell viability (intervened for 24, 48 h), migration number, invasion number and miR-212-3p expression of cells in the isorhamnetin group, isorhamnetin+knocking down negative control group and isorhamnetin+overexpressing negative control group were significantly reduced or decreased or down-regulated, while the apoptosis rate, mRNA and protein expressions of PTEN were significantly increased or up-regulated (P<0.05). Compared with isorhamnetin group and isorhamnetin+knocking down negative control group, the cell viability, migration number, invasion number and miR-212-3p expression of cells in the isorhamnetin+knocking down SLC25A25-AS1 group were significantly increased or up- regulated, while the apoptosis rate, mRNA and protein expressions of PTEN were significantly reduced or down-regulated (P< 0.05). Compared with isorhamnetin group and isorhamnetin+overexpressing negative control group, the cell viability, migration number, invasion number and miR-212-3p expression of cells in isorhamnetin+overexpressing SLC25A25-AS1 group were significantly reduced or decreased or down-regulated, while the apoptosis rate, PTEN mRNA and protein expressions were significantly increased or up-regulated (P<0.05). CONCLUSIONS Isorhamnetin may inhibit the development of gastric cancer by up-regulating the expression of SLC25A25-AS1, down-regulating miR-212-3p, and up-regulating the expression of PTEN, which is a downstream target of miR-212-3p.
7.Oxylipidomics Combined with Transcriptomics Reveals Mechanism of Jianpi Huogu Prescription in Treating Steroid-induced Osteonecrosis of Femoral Head in Rats
Lili WANG ; Qun LI ; Zhixing HU ; Qianqian YAN ; Liting XU ; Xiaoxiao WANG ; Chunyan ZHU ; Yanqiong ZHANG ; Weiheng CHEN ; Haijun HE ; Chunfang LIU ; Na LIN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):190-199
ObjectiveTo unveil the mechanism of Jianpi Huogu prescription (JPHGP) in ameliorating the dyslipidemia of steroid-induced osteonecrosis of the femur head (SONFH) by oxylipidomics combined with transcriptomics. MethodsSixty SD rats were assigned into normal, model, low-, medium-, and high-dose (2.5, 5, 10 g·kg-1, respectively) JPHGP, and Jiangushengwan (1.53 g·kg-1) groups. Lipopolysaccharide was injected into the tail vein at a dose of 20 μg·kg-1 on days 1 and 2, and methylprednisolone sodium succinate was injected at a dose of 40 mg·kg-1 into the buttock muscle on days 3 to 5. The normal group received an equal volume of normal saline. Drug administration by gavage began 4 weeks after the last injection, and samples were taken after administration for 8 weeks. Hematoxylin-eosin staining was conducted to reveal the histopathological changes of the femoral head, and the number of adipocytes, the rate of empty bone lacunae, and the trabecular area were calculated. Micro-computed tomography was used for revealing the histological and histomorphometrical changes of the femoral head. Enzyme-linked immunosorbent assay was employed to measure the serum levels of triglyceride (TG), total cholesterol (TC), low-density lipoprotein (LDL), high-density lipoprotein (HDL), apolipoprotein A1 (ApoA1), and apolipoprotein B (ApoB). At the same time, the femoral head was collected for oxylipidomic and transcriptomic detection. The differential metabolites and differential genes were enriched and analyzed, and the target genes regulating lipid metabolism were predicted. The predicted target proteins were further verified by molecular docking, immunohistochemistry, and Western blot. ResultsCompared with the normal group, the model group showcased thinning of the femoral head, trabecular fracture, karyopyknosis, subchondral cystic degeneration, increases in the number of adipocytes and the rate of empty bone lacunae (P<0.01), a reduction in the trabecular area (P<0.01), decreases in BMD, Tb.Th, Tb.N, and BV/TV, and increases in Tb.Sp and BS/BV (P<0.01). Compared with the model group, the JPHGP groups showed no obvious thinning of the femoral head or subchondroidal cystic degeneration. The high- and medium-dose JPHGP groups presented declines in the number of adipocytes and the rate of empty bone lacunae, an increase in the trabecular area (P<0.05, P<0.01), rises in BMD, Tb.Th, Tb.N, and BV/TV, and decreases in Tb.Sp and BS/BV (P<0.05, P<0.01). Compared with the normal group, the model group showcased raised serum levels of TG, TC, LDL, and ApoB and lowered serum levels of HDL and ApoA1 (P<0.01). Compared with the model group, the JPHGP groups had lowered serum levels of TG, TC, LDL, and ApoB (P<0.05, P<0.01) and a risen serum level of ApoA1 (P<0.05, P<0.01). Moreover, the serum level of HDL in the high-dose JPHGP group increased (P<0.01). A total of 19 different metabolites of disease set and drug set were screened out by oxylipidomics of the femoral head, and 119 core genes with restored expression were detected by transcriptomics. The enriched pathways were mainly concentrated in inflammation, lipids, apoptosis, and osteoclast differentiation. Molecular docking, immunohistochemistry, and Western blot results showed that compared with the normal group, the model group displayed increased content of 5-lipoxygenase (5-LO) and peroxisome proliferator-activated receptor γ (PPARγ) in the femoral head (P<0.01). Compared with the model group, medium- and high-dose JPHGP reduced the content of 5-LO and PPARγ (P<0.05, P<0.01). ConclusionJPHGP can restore the levels of oxidized lipid metabolites by regulating the 5-LO-PPARγ axis to treat SONFH in rats. Relevant studies provide experimental evidence for the efficacy mechanism of JPHGP in the treatment of SONFH.
8.A Randomized Controlled Trial of Stone Needle Thermocompression and Massage for Treating Chronic Musculoskeletal Pain in the Shoulder and Back:A Secondary Analysis of Muscle Elasticity as a Mediator
Jingjing QIAN ; Yuanjing LI ; Li LI ; Yawei XI ; Ying WANG ; Cuihua GUO ; Jiayan ZHOU ; Yaxuan SUN ; Shu LIU ; Guangjing YANG ; Na YUAN ; Xiaofang YANG
Journal of Traditional Chinese Medicine 2025;66(9):935-940
ObjectiveTo evaluate the effectiveness of stone needle thermocompression and massage compared to flurbiprofen gel patch in relieving chronic musculoskeletal pain in the shoulder and back, and to explore the potential mediating mechanism through muscle elasticity. MethodsA total of 120 patients with chronic musculoskeletal pain in the shoulder and back were randomly assigned to either stone needle group or flurbiprofen group, with 60 patients in each. The stone needle group received stone needle thermocompression and massage for 30 minutes, three times per week; the flurbiprofen group received flurbiprofen gel patch twice daily. Both groups were treated for 2 weeks. Pain improvement, as the primary outcome, was assessed using the Global Pain Scale (GPS) at baseline, after 2 weeks of treatment, and again 2 weeks post-treatment. To explore potential mechanisms, a mediator analysis was conducted by measuring changes in superficial and deep muscle elasticity using musculoskeletal ultrasound at baseline and after the 2-week treatment period. ResultsThe stone needle group showed significantly greater pain relief than the flurbiprofen group 2 weeks post-treatment. After adjusting for confounders related to pain duration, the between-group mean difference was -8.8 [95% CI (-18.2, -0.7), P<0.05]. Part of the therapeutic effect was mediated by changes in deep muscle elasticity, with a mediation effect size of -1.5 [95% CI (-2.0, -0.9), P = 0.024], accounting for 17.9% of the total effect. ConclusionStone needle thermocompression and massage can effectively relieve chronic musculoskeletal pain in the shoulder and back, partly through a mediating effect of improved deep muscle elasticity.
9.Oxylipidomics Combined with Transcriptomics Reveals Mechanism of Jianpi Huogu Prescription in Treating Steroid-induced Osteonecrosis of Femoral Head in Rats
Lili WANG ; Qun LI ; Zhixing HU ; Qianqian YAN ; Liting XU ; Xiaoxiao WANG ; Chunyan ZHU ; Yanqiong ZHANG ; Weiheng CHEN ; Haijun HE ; Chunfang LIU ; Na LIN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):190-199
ObjectiveTo unveil the mechanism of Jianpi Huogu prescription (JPHGP) in ameliorating the dyslipidemia of steroid-induced osteonecrosis of the femur head (SONFH) by oxylipidomics combined with transcriptomics. MethodsSixty SD rats were assigned into normal, model, low-, medium-, and high-dose (2.5, 5, 10 g·kg-1, respectively) JPHGP, and Jiangushengwan (1.53 g·kg-1) groups. Lipopolysaccharide was injected into the tail vein at a dose of 20 μg·kg-1 on days 1 and 2, and methylprednisolone sodium succinate was injected at a dose of 40 mg·kg-1 into the buttock muscle on days 3 to 5. The normal group received an equal volume of normal saline. Drug administration by gavage began 4 weeks after the last injection, and samples were taken after administration for 8 weeks. Hematoxylin-eosin staining was conducted to reveal the histopathological changes of the femoral head, and the number of adipocytes, the rate of empty bone lacunae, and the trabecular area were calculated. Micro-computed tomography was used for revealing the histological and histomorphometrical changes of the femoral head. Enzyme-linked immunosorbent assay was employed to measure the serum levels of triglyceride (TG), total cholesterol (TC), low-density lipoprotein (LDL), high-density lipoprotein (HDL), apolipoprotein A1 (ApoA1), and apolipoprotein B (ApoB). At the same time, the femoral head was collected for oxylipidomic and transcriptomic detection. The differential metabolites and differential genes were enriched and analyzed, and the target genes regulating lipid metabolism were predicted. The predicted target proteins were further verified by molecular docking, immunohistochemistry, and Western blot. ResultsCompared with the normal group, the model group showcased thinning of the femoral head, trabecular fracture, karyopyknosis, subchondral cystic degeneration, increases in the number of adipocytes and the rate of empty bone lacunae (P<0.01), a reduction in the trabecular area (P<0.01), decreases in BMD, Tb.Th, Tb.N, and BV/TV, and increases in Tb.Sp and BS/BV (P<0.01). Compared with the model group, the JPHGP groups showed no obvious thinning of the femoral head or subchondroidal cystic degeneration. The high- and medium-dose JPHGP groups presented declines in the number of adipocytes and the rate of empty bone lacunae, an increase in the trabecular area (P<0.05, P<0.01), rises in BMD, Tb.Th, Tb.N, and BV/TV, and decreases in Tb.Sp and BS/BV (P<0.05, P<0.01). Compared with the normal group, the model group showcased raised serum levels of TG, TC, LDL, and ApoB and lowered serum levels of HDL and ApoA1 (P<0.01). Compared with the model group, the JPHGP groups had lowered serum levels of TG, TC, LDL, and ApoB (P<0.05, P<0.01) and a risen serum level of ApoA1 (P<0.05, P<0.01). Moreover, the serum level of HDL in the high-dose JPHGP group increased (P<0.01). A total of 19 different metabolites of disease set and drug set were screened out by oxylipidomics of the femoral head, and 119 core genes with restored expression were detected by transcriptomics. The enriched pathways were mainly concentrated in inflammation, lipids, apoptosis, and osteoclast differentiation. Molecular docking, immunohistochemistry, and Western blot results showed that compared with the normal group, the model group displayed increased content of 5-lipoxygenase (5-LO) and peroxisome proliferator-activated receptor γ (PPARγ) in the femoral head (P<0.01). Compared with the model group, medium- and high-dose JPHGP reduced the content of 5-LO and PPARγ (P<0.05, P<0.01). ConclusionJPHGP can restore the levels of oxidized lipid metabolites by regulating the 5-LO-PPARγ axis to treat SONFH in rats. Relevant studies provide experimental evidence for the efficacy mechanism of JPHGP in the treatment of SONFH.
10.The effects and mechanisms of silica on alveolar epithelial cell apoptosis
Yali LAN ; Wenyao SU ; Zhiming HU ; Ping WANG ; Bizhu ZHANG ; Na ZHAO
China Occupational Medicine 2025;52(1):10-16
Objective To investigate the effects and mechanisms of silica dust on the apoptosis of alveolar epithelial cell (AEC) through in vitro and animal experiments. Methods i) In vitro experiment. A549 cells were stimulated with 100 mg/L silica suspension for 0, 12, 24 and 48 hours. The cell apoptosis rate was detected by flow cytometry. ii) Animal experiment. Specific pathogen-free male C57BL/6 mice were randomly divided into control, 14-day, 28-day, and 56-day groups, with five mice in each group. The mice in the control group were sacrificed at 56 days after being treated with 40.0 μL 0.9% sodium chloride solution, and the mice in the last three groups were sacrificed at 14, 28 and 56 days after being treated with 40.0 μL silica suspension with a mass concentration of 125 g/L via tracheal exposure method. The lung tissues of mice were collected to measure lung organ coefficients. Masson staining was used to detect the degree of pulmonary fibrosis, and Ashcroft scores were evaluated. The apoptosis of AEC in mice was observed by TUNEL immunofluorescence assay. iii) The mRNA relative expression of apoptosis-related genes in A549 cells and mouse lung tissue was detected using reverse transcription and real-time fluorescence quantitative polymerase chain reaction. Results i) In vitro experiment. The apoptosis rate of A549 cells increased with longer silica exposure (all P<0.05). The relative expression of B cell lymphoma-2 (BCL-2) mRNA in A549 cells in 24 h group and 48 h group decreased (both P<0.05), and the relative expression of BCL-2 associated X protein (BAX) mRNA increased (both P<0.05), compared with 0 h group. The mRNA relative expression of caspase (CASP) -3 and CASP-9 in A549 cells increased with longer silica exposure (all P<0.05). ii) Animal experiment. The lung organ coefficients and Ashcroft score in mice progressively increased (all P<0.05), the degree of pulmonary fibrosis was gradually aggravated, and TUNEL positive cells in lung tissue were gradually increased, while Bax, Casp-3 and Casp-9 mRNA relative expression increased with longer silica exposure (all P<0.05). Conclusion Silica dust may cause pulmonary fibrosis by inducing apoptosis of AEC, with a time-dependent effect. The mechanism may be related to the effect of silica dust on mitochondrial apoptosis through Bcl-2/Bax/Caspase-3 signaling pathway.


Result Analysis
Print
Save
E-mail