1.Zuoguiwan Mitigates Oxidative Stress in Rat Model of Hyperthyroidism Due to Kidney-Yin Deficiency via DRD4/NOX4 Pathway
Ling LIN ; Qianming LIANG ; Changsheng DENG ; Li RU ; Zhiyong XU ; Chao LI ; Mingshun SHEN ; Yueming YUAN ; Muzi LI ; Lei YANG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):43-51
ObjectiveTo decipher the mechanism by which Zuoguiwan (ZGW) treat hyperthyroidism in rats with kidney-Yin deficiency based on the dopamine receptor D4 (DRD4)/nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4 (NOX4) signaling pathway. MethodsThe rat model of kidney-Yin deficiency was induced by unilateral intramuscular injection of dexamethasone (0.35 mg·kg-1). After successful modeling, the rats were randomized into model, methimazole (positive control, 5 mg·kg-1), low-, medium-, and high-dose (1.85, 3.70, 7.40 g·kg-1, respectively) ZGW, and normal control groups. After 21 days of continuous gavage, the behavioral indexes and body weight changes of rats were evaluated. The pathological changes of the renal tissue were observed by hematoxylin-eosin staining. The serum levels of thyroid hormones [triiodothyronine (T3), thyroxine (T4), thyroid-stimulating hormone (TSH)], renal function indexes [serum creatine (Scr) and blood urea nitrogen (BUN)], energy metabolism markers [cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP)], and oxidative stress-related factors [superoxide dismutase (SOD), malondialdehyde (MDA), and NADPH)] were measured by enzyme-linked immunosorbent assay (ELISA). Western blot was employed to analyze the expression of DRD4, NOX4, mitochondrial respiratory chain complex proteins [NADH:ubiquinone oxidoreductase subunit S4 (NDUFS4) and cytochrome C oxidase subunit 4 (COX4)], and inflammation-related protein [tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), p38 mitogen-activated protein kinase (MAPK)] pathway in the renal tissue. ResultsCompared with the normal group, the model group showed mental malaise, body weight decreases (P<0.01), inflammatory cell infiltration in the renal tissue, a few residual parotid glands in the thyroid, elevations in serum levels of T3, T4, Scr, BUN, cAMP, cAMP/cGMP, MDA, and NADPH (P<0.01), down-regulation in protein levels of TSH, SOD, and DRD4 (P<0.05, P<0.01), and up-regulation in expression of NOX4, p-p38 MAPK/p38 MAPK, and inflammatory factors (P<0.01). Compared with the model group, ZGW increased the body weight (P<0.05, P<0.01), reduced the infiltration of renal interstitial inflammatory cells, restored the thyroid structure and follicle size, lowered the serum levels of T3, T4, Scr, BUN, cAMP, cAMP/cGMP, MDA and NADPH (P<0.05, P<0.01), up-regulated the expression of TSH, SOD and DRD4 (P<0.05, P<0.01), and down-regulated the expression of NOX4, p-p38 MAPK/p38 MAPK, and inflammatory factors (P<0.05, P<0.01). Moreover, high-dose ZGW outperformed methimazole (P<0.05). ConclusionBy activating DRD4, ZGW can inhibit the expression of NOX4 mediated by the p38 MAPK pathway, reduce oxidative stress and inflammatory response, thereby ameliorating the pathological state of hyperthyroidism due to kidney-Yin deficiency. This study provides new molecular mechanism support for the clinical application of ZGW.
2.Current Status of Traditional Chinese Medicine Diagnosis and Treatment of Inflammatory Bowel Disease and the Research on Mechanism
Junxiang LI ; Hong SHEN ; Tangyou MAO ; Lei ZHU ; Jiaqi ZHANG ; Zhibin WANG ; Xudong TANG
Journal of Traditional Chinese Medicine 2026;67(1):103-110
In recent years, traditional Chinese medicine (TCM) has achieved significant progress in the treatment of inflammatory bowel disease (IBD). A comprehensive literature search was conducted covering the period from January 1, 2010, to December 30, 2024, across Chinese databases including China National Knowledge Infrastructure (CNKI), Wanfang Data, VIP China Science and Technology Journal Database, and the Chinese Biomedical Literature Service System, as well as international databases such as PubMed, Web of Science, and Embase. The clinical applications and mechanistic studies of TCM in IBD were systematically reviewed. The current status of TCM research on the etiology and pathogenesis of IBD, innovative clinical practices, and multimodal therapeutic approaches, including Chinese herbal formulas, single herbs or active compounds, acupuncture, herbal retention enema, and acupoint application, were summarized, together with their synergistic effects when combined with western medical treatments. The development and application of Chinese patent medicines for IBD are undergoing a profound transition from efficacy validation to mechanistic exploration. Mechanistic studies on the effects of TCM in IBD mainly focus on regulating gut microbiota homeostasis, repairing the intestinal mucosal barrier, and modulating intestinal immune balance. Furthermore, future research directions for TCM-based IBD management are proposed, including the establishment of TCM diagnostic and treatment models, expanding integrated applications of external and internal TCM therapies, innovating personalized treatment strategies, and advancing drug development. These efforts aim to provide insights for the standardized and precision-oriented development of TCM in the diagnosis and treatment of IBD.
3.Cost-utility analysis of rezivertinib versus gefitinib as first-line treatment for EGFR mutation-positive advanced non-small cell lung cancer
Xiaowei ZHU ; Tongming ZHU ; Jia YI ; Wenqiang LI ; Piaopiao LU ; Aizong SHEN
China Pharmacy 2026;37(1):55-60
OBJECTIVE To evaluate the cost-effectiveness of rezivertinib versus gefitinib as first-line treatment for epidermal growth factor receptor (EGFR) mutation-positive advanced non-small cell lung cancer (NSCLC) from the perspective of the Chinese healthcare system. METHODS A Markov model was constructed based on the REZOR trial data, with a cycle length of 3 weeks and a study duration of 5 years. Both costs and health outcomes were discounted at an annual rate of 5%. A cost-utility analysis was conducted using 3 times China’s 2024 per capita gross domestic product as the willingness-to-pay (WTP) threshold. The economic differences between the rezivertinib regimen versus the gefitinib regimen were evaluated using the incremental cost- effectiveness ratio (ICER) and incremental net monetary benefit (INMB). Sensitivity and scenario analyses were performed to verify the robustness of the model. RESULTS Compared to the gefitinib regimen, the rezivertinib regimen saved 225 310.47 yuan and gained an additional 0.57 quality- adjusted life years (QALYs), resulting in an ICER of -395 562.80 yuan/QALY, which was much lower than the WTP threshold of this study, indicating that rezivertinib had an absolute economic advantage. The INMB analysis (389 041.26 yuan) further validated this conclusion. One-way and probabilistic sensitivity analyses confirmed the robustness of the model. Scenario analysis, incorporating a 15% reduction in drug prices and adjustments to the utility values for progression free survival and progression disease, yielded consistent results with the base case analysis. CONCLUSIONS Compared to gefitinib, rezivertinib as a first-line treatment for EGFR mutation-positive advanced NSCLC has an absolute economic advantage.
4.Successful Pregnancy after Autologous Cryopreserved Ovarian Tissue Transplantation in a Cervical Cancer Patient: the First Reported Case in China
Yubin LI ; Yang ZHANG ; Tian MENG ; Bing CAI ; Chuling WU ; Changxi WANG ; Hongwei SHEN ; Guofen YANG
Journal of Sun Yat-sen University(Medical Sciences) 2025;46(3):498-505
ObjectiveTo investigate the efficacy of ovarian tissue cryopreservation and autologous transplantation in preserving fertility and ovarian endocrine function in patients with cervical cancer. MethodsA 26-year-old patient with stage ⅡA1 cervical cancer underwent ovarian tissue harvesting and cryopreservation during cancer surgery. Following complete remission of the cancer, autologous ovarian tissue transplantation was performed. Follow-up monitoring included assessment of menopausal symptoms, hormone levels, and follicular development. ResultsSix months after transplantation, follicle-stimulating hormone levels decreased to 6.60 U/L, and estradiol levels increased from <10.00 ng/L to 89.00 ng/L. At 10 months after transplantation, ultrasound monitoring confirmed follicular development and physiological ovulation in the transplanted ovarian tissue. By 15 months after transplantation, follicle-stimulating hormone levels remained stable at 7.24 U/L, and estradiol levels further increased to 368.00 ng/L. Over 2 years after transplantation, the patient successfully gave birth to a healthy baby through assisted reproductive technology. ConclusionThe restoration of endocrine and ovulation functions in the transplanted cryopreserved ovarian tissue, followed by successful pregnancy, demonstrates the clinical success of ovarian tissue transplantation.
5.NINJ1 impairs the anti-inflammatory function of hUC-MSCs with synergistic IFN-γ and TNF-α stimulation.
Wang HU ; Guomei YANG ; Luoquan AO ; Peixin SHEN ; Mengwei YAO ; Yuchuan YUAN ; Jiaoyue LONG ; Zhan LI ; Xiang XU
Chinese Journal of Traumatology 2025;28(4):276-287
PURPOSE:
To investigate the regulatory role of nerve injury-induced protein 1 (NINJ1) in the anti-inflammatory function of human umbilical cord mesenchymal stem cells (hUC-MSCs) co-stimulated by interferon-gamma (IFN-γ) and tumor necrosis factor-alpha (TNF-α).
METHODS:
hUC-MSCs were expanded in vitro using standard protocols, with stem cell characteristics confirmed by flow cytometry and multilineage differentiation assays. The immunomodulatory properties and cellular activity of cytokine-co-pretreated hUC-MSCs were systematically evaluated via quantitative reverse transcription RT-qPCR, lymphocyte proliferation suppression assays, and Cell Counting Kit-8 viability tests. Transcriptome sequencing, Western blotting and small interfering RNA interference were integrated to analyze the regulatory mechanisms of NINJ1 expression. Functional roles of NINJ1 in pretreated hUC-MSCs were elucidated through gene silencing combined with lactate dehydrogenase release assays, Annexin V/Propidium Iodide apoptosis analysis, macrophage co-culture models, and cytokine Enzyme-Linked Immunosorbent Assay. Therapeutic efficacy was validated in a cecal ligation and puncture-induced septic mouse model: 80 mice were randomly allocated into 4 experimental groups (n=20/group): sham group (laparotomy without cecal ligation); phosphate-buffered saline-treated group (cecal ligation and puncture (CLP) + 0.1 mL phosphate-buffered saline); hUC-MSCs (small interfering RNA (siRNA)-interferon-gamma and tumor necrosis factor-alpha co-stimulation (IT))-treated group (CLP + hUC-MSCs transfected with scrambled siRNA); and hUC-MSCs (siNINJ1-IT)-treated group (CLP + hUC-MSCs with NINJ1-targeting siRNA).
RESULTS:
hUC-MSCs demonstrated compliance with International Society for Cellular Therapy criteria, confirming their stem cell identity. IFN-γ/TNF-α co-pretreatment enhanced the immunosuppressive capacity of hUC-MSCs, accompanied by the reduction of cellular viability, while concurrently upregulating pro-inflammatory cytokines such as interleukin-6 and interleukin-1β. This co-stimulation significantly elevated NINJ1 expression in hUC-MSCs, whereas genetic silencing of NINJ1 effectively suppressed pro-inflammatory cytokine production and attenuated damage-associated molecular patterns release through inhibition of programmed plasma membrane rupture. Furthermore, the NINJ1 interference potentiated the ability of cytokine-pretreated hUC-MSCs to suppress LPS-induced pro-inflammatory responses in RAW264.7 macrophages. In cecal ligation and puncture-induced sepsis model, NINJ1-silenced hUC-MSCs exhibited enhanced therapeutic efficacy, manifested by reduced systemic inflammation and multi-organ damage.
CONCLUSION
Our findings shed new light on the immunomodulatory functions of cytokine-primed MSCs, offering groundbreaking insights for developing MSC-based therapies against inflammatory diseases via interfering the expression of NINJ1.
Mesenchymal Stem Cells/drug effects*
;
Animals
;
Interferon-gamma/pharmacology*
;
Tumor Necrosis Factor-alpha/pharmacology*
;
Humans
;
Mice
;
Umbilical Cord/cytology*
;
Cells, Cultured
;
Apoptosis
;
Male
6.CFAP300 loss-of-function variant causes primary ciliary dyskinesia and male infertility via disrupting sperm flagellar assembly and acrosome formation.
Hua-Yan YIN ; Yu-Qi ZHOU ; Qun-Shan SHEN ; Zi-Wen CHEN ; Jie-Ru LI ; Huan WU ; Yun-Xia CAO ; Rui GUO ; Bing SONG
Asian Journal of Andrology 2025;27(6):743-750
Primary ciliary dyskinesia (PCD) is a genetically heterogeneous disorder characterized by impaired motility of cilia and flagella. Mutations in cilia- and flagella-associated protein 300 ( CFAP300 ) are associated with human PCD and male infertility; however, the underlying pathogenic mechanisms remain poorly understood. In a consanguineous Chinese family, we identified a homozygous CFAP300 loss-of-function variant (c.304delC) in a proband presenting with classical PCD symptoms and severe sperm abnormalities, including dynein arm deficiency and acrosomal malformation, as confirmed by transmission electron microscopy (TEM). Histological analysis revealed multiple morphological abnormalities of the sperm flagella in CFAP300 -mutant individual, whereas immunofluorescence demonstrated markedly reduced CFAP300 expression in the spermatozoa of the proband. Furthermore, tandem mass tag (TMT)-based quantitative proteomics showed that the CFAP300 mutation reduced key spermatogenesis proteins (e.g., sperm flagellar 2 [SPEF2], solute carrier family 25 member 31 [SLC25A31], and A-kinase anchoring protein 3 [AKAP3]) and mitochondrial ATP synthesis factors (e.g., SLC25A31, cation channel sperm-associated 3 [CATSPER3]). It also triggered abnormal increases in autophagy-related proteins and signaling mediator phosphorylation. These molecular alterations are likely to contribute to progressive deterioration of sperm ultrastructure and function. Notably, successful pregnancy was achieved via intracytoplasmic sperm injection (ICSI) using the proband's sperm. Overall, this study expands the known CFAP300 mutational spectrum and offers novel mechanistic insights into its role in spermatogenesis.
Humans
;
Male
;
Infertility, Male/pathology*
;
Acrosome/pathology*
;
Sperm Tail/pathology*
;
Pedigree
;
Spermatozoa
;
Adult
;
Loss of Function Mutation
;
Ciliary Motility Disorders/genetics*
;
Spermatogenesis/genetics*
;
Female
7.FGF19 alleviates inflammatory injury in vascular endothelial cells by activating the Nrf2/HO-1 signaling pathway.
Yan-Jun ZHANG ; Fei-Fei XIAO ; Xiao-Hua LI ; Shen-Hua TANG ; Yi SANG ; Chao-Yue LIU ; Jian-Chang LI
Chinese Journal of Contemporary Pediatrics 2025;27(5):601-608
OBJECTIVES:
To investigate the role and mechanism of fibroblast growth factor (FGF) 19 in inflammation-induced injury of vascular endothelial cells caused by high glucose (HG).
METHODS:
Human umbilical vein endothelial cells (HUVECs) were randomly divided into four groups: control, HG, FGF19, and HG+FGF19 (n=3 each). The effect of different concentrations of glucose and/or FGF19 on HUVEC viability was assessed using the CCK8 assay. Flow cytometry was utilized to examine the impact of FGF19 on HUVEC apoptosis. Levels of interleukin-6 (IL-6), inducible nitric oxide synthase (iNOS), total superoxide dismutase (T-SOD), and malondialdehyde (MDA) were measured by ELISA. Real-time quantitative PCR and Western blotting were used to determine the mRNA and protein expression levels of vascular endothelial growth factor (VEGF), nuclear factor erythroid 2 related factor 2 (Nrf2), and heme oxygenase-1 (HO-1). Cells were further divided into control, siRNA-Nrf2 (siNrf2), HG, HG+FGF19, HG+FGF19+negative control, and HG+FGF19+siNrf2 groups (n=3 each) to observe the effect of FGF19 on oxidative stress injury in HUVECs induced by high glucose after silencing the Nrf2 gene.
RESULTS:
Compared to the control group, the HG group exhibited increased apoptosis rate, increased IL-6, iNOS and MDA levels, and increased VEGF mRNA and protein expression, along with decreased T-SOD activity and decreased mRNA and protein expression of Nrf2 and HO-1 (P<0.05). Compared to the HG group, the HG+FGF19 group showed reduced apoptosis rate, decreased IL-6, iNOS and MDA levels, and decreased VEGF mRNA and protein expression, with increased T-SOD activity and increased Nrf2 and HO-1 mRNA and protein expression (P<0.05). Compared to the HG+FGF19+negative control group, the HG+FGF19+siNrf2 group had decreased T-SOD activity and increased MDA levels (P<0.05).
CONCLUSIONS
FGF19 can alleviate inflammation-induced injury in vascular endothelial cells caused by HG, potentially through the Nrf2/HO-1 signaling pathway.
Humans
;
NF-E2-Related Factor 2/genetics*
;
Signal Transduction
;
Human Umbilical Vein Endothelial Cells/drug effects*
;
Fibroblast Growth Factors/pharmacology*
;
Heme Oxygenase-1/physiology*
;
Apoptosis/drug effects*
;
Glucose
;
Inflammation
;
Interleukin-6/analysis*
;
Vascular Endothelial Growth Factor A/genetics*
;
Nitric Oxide Synthase Type II/analysis*
;
Cells, Cultured
8.Scleromitrion diffusum reverses epithelial-mesenchymal transi-tion of gastric mucosa in rats with gastric precancerous lesions.
Luping MA ; Xin ZUO ; Weikai ZHU ; Jiyan LI ; Yanyan ZHAO ; Jingyuan ZHANG ; Hui SHEN
Journal of Zhejiang University. Medical sciences 2025;54(3):342-349
OBJECTIVES:
To investigate the effect of Scleromitrion diffusum on gastric mucosal epithelial-mesenchymal transition (EMT) in rats with gastric precancerous lesion.
METHODS:
Fifty SD rats were randomly divided into blank control group (n=11), model control group (n=13), Scleromitrion diffusum (SD) group (n=13) and vitase group (n=13). Gastric precancerous lesion animal model was prepared by 1-methyl-3-nitro-1-nitrosoguanidine complex polyfactor method, and the drugs were administrated by gavage once a day for 6 weeks. The pathological changes of gastric mucosa were observed with hematoxylin and eosin staining, the expression of EMT marker proteins were detected with immunohistochemical staining and Western blotting.
RESULTS:
Compared with the model control group, the gastric mucosal injury was significantly attenuated in the Scleromitrion diffusum group, the mucosal tissue structure gradually recovered, the saccular expansion area was reduced, and the inflammatory infiltration was ameliorated. The expression of epithelial cadherin was higher, and the expression of neural cadherin and vimentin in the Scleromitrion diffusum group were lower than those of model control group (all P<0.05).
CONCLUSIONS
Scleromitrion diffusum can ameliorate gastric mucosal injury in rats with gastric precancerous lesion by reversing the EMT.
Animals
;
Rats
;
Rats, Sprague-Dawley
;
Epithelial-Mesenchymal Transition/drug effects*
;
Precancerous Conditions/metabolism*
;
Gastric Mucosa/metabolism*
;
Stomach Neoplasms/drug therapy*
;
Male
;
Cadherins/metabolism*
9.Progress on carboxyl-substituted phthalocyanine photosen-sitizers and their drug delivery systems for photodynamic therapy.
Dan SHEN ; Hongjie HUANG ; Jincan CHEN ; Bowen LI ; Zhuo CHEN
Journal of Zhejiang University. Medical sciences 2025;54(4):500-510
Research in photodynamic therapy (PDT) primarily focuses on enhancing light penetration depth, improving oxygen supply, and optimizing photosensitizer delivery. Notably, the delivery efficiency of the photosensitizer is crucial for therapeutic efficacy. Carboxyl-substituted phthalocyanines, as important photosensitizing molecules, possess unique chemical modification sites that enable direct targeted delivery or integration into diverse delivery systems. Their synthesis predominantly employs mixed- or cross-condensation, selective synthesis, and axial modification strategies to introduce carboxyl groups. However, their inherent hydrophobicity significantly hinders effective delivery. To address this limitation, modifications with peptides or quaternary ammonium salt derivatives may facilitate precise delivery to tumor cells and pathogens. With advances in nanotechnology, carboxyl-substituted phthalocyanines can serve as key photosensitizer modules, effectively integrated into nanomaterials such as biomacromolecules, inorganic metals, and polymers for both active and passive delivery. Recently, researchers have exploited the π-π stacking and other intermolecular forces among carboxyl-substituted phthalocyanine molecules to drive their self-assembly into nano-micelles, enabling carrier-free delivery or co-delivery with other therapeutic agents for synergistic effects. This review systematically outlines the synthesis strategies for carboxyl-substituted phthalo-cyanines. Taking mono-carboxyl-substituted zinc phthalocyanine as a model molecule, the performance of three delivery modalities were compared: single-molecule targeted delivery, nanocarrier-encapsulated delivery, and carrier-free self-assembled delivery, in terms of PDT efficacy, biocompatibility, and imaging-guided tracing capabilities, to provide a systematic technical framework for the rational design of novel modular photosensitizers and to advance the clinical translation of PDT in precision oncology and anti-infective therapy.
Photochemotherapy/methods*
;
Indoles/administration & dosage*
;
Isoindoles
;
Photosensitizing Agents/administration & dosage*
;
Drug Delivery Systems
;
Humans
10.Combination of CT/MRI LI-RADS With Second-Line Contrast-Enhanced Ultrasound Using Sulfur Hexafluoride or Perfluorobutane for Diagnosing Hepatocellular Carcinoma in High-Risk Patients
Yu LI ; Sheng LI ; Qing LI ; Kai LI ; Jing HAN ; Siyue MAO ; Xiaohong XU ; Zhongzhen SU ; Yanling ZUO ; Shousong XIE ; Hong WEN ; Xuebin ZOU ; Jingxian SHEN ; Lingling LI ; Jianhua ZHOU
Korean Journal of Radiology 2025;26(4):346-359
Objective:
The CT/MRI Liver Imaging Reporting and Data System (LI-RADS) demonstrates high specificity with relatively limited sensitivity for diagnosing hepatocellular carcinoma (HCC) in high-risk patients. This study aimed to explore the possibility of improving sensitivity by combining CT/MRI LI-RADS v2018 with second-line contrast-enhanced ultrasound (CEUS) LI-RADS v2017 using sulfur hexafluoride (SHF) or perfluorobutane (PFB).
Materials and Methods:
This retrospective analysis of prospectively collected multicenter data included high-risk patients with treatment-naive hepatic observations. The reference standard was pathological confirmation or a composite reference standard (only for benign lesions). Each participant underwent concurrent CT/MRI, SHF-enhanced US, and PFB-enhanced US examinations. The diagnostic performances for HCC of CT/MRI LI-RADS alone and three combination strategies (combining CT/ MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or a modified algorithm incorporating the Kupffer-phase findings for PFB [modified PFB]) were evaluated. For the three combination strategies, apart from the CT/MRI LR-5 criteria, HCC was diagnosed if CT/MRI LR-3 or LR-4 observations met the LR-5 criteria using LI-RADS SHF, LI-RADS PFB, or modified PFB.
Results:
In total, 281 participants (237 males; mean age, 55 ± 11 years) with 306 observations (227 HCCs, 40 non-HCC malignancies, and 39 benign lesions) were included. Using LI-RADS SHF, LI-RADS PFB, and modified PFB, 20, 23, and 31 CT/MRI LR-3/4 observations, respectively, were reclassified as LR-5, and all were pathologically confirmed as HCCs. Compared to CT/MRI LI-RADS alone (74%, 95% confidence interval [CI]: 68%–79%), the three combination strategies combining CT/MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or modified PFB increased sensitivity (83% [95% CI: 77%–87%], 84% [95% CI: 79%–89%], 88% [95% CI: 83%–92%], respectively; all P < 0.001), while maintaining the specificity at 92% (95% CI: 84%–97%).
Conclusion
The combination of CT/MRI LI-RADS with second-line CEUS using SHF or PFB improved the sensitivity of HCC diagnosis without compromising specificity.

Result Analysis
Print
Save
E-mail